PCAN-Chip USB

Stamp Module for the Implementation of CAN FD to USB Connections

User Manual

Document version 1.5.0 (2023-06-23)

Relevant products

Product Name	Part number
PCAN-Chip USB	IPEH-004025
PCAN-Chip USB Eval	IPEH-004025-EVAL

The cover picture shows the stamp module PCAN-Chip USB (two times) and the affiliated evaluation board.

PCAN® is a registered trademark of PEAK-System Technik GmbH. CANopen®, CANopen FD®, and CiA® are registered EU trademarks of CAN in Automation e.V. Other product names in this document may be the trademarks or registered trademarks of their respective companies. They are not explicitly marked by [™] or ®.

© 2023 PEAK-System Technik GmbH

Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH Otto-Röhm-Straße 69 64293 Darmstadt Germany

Phone: +49 6151 8173-20 Fax: +49 6151 8173-29

www.peak-system.com info@peak-system.com

Document version 1.5.0 (2023-06-23)

____ PEAK

Contents

1 Ir	ntroduction	5
1.1	Properties of the PCAN-Chip USB at a Glance	5
1.2	Properties of the PCAN-Chip USB Evaluation Board at a Glance	6
1.3	System Requirements for the Operation of the Evaluation Board	7
1.4	Scope of Supply PCAN-Chip USB	7
1.5	Scope of Supply PCAN-Chip USB Eval	7
2 E>	cternal Circuits Stamp Module	8
2.1	Connectors	8
2.2	Synchronization of Several Stamp Modules	13
2.3	CAN Transceiver Type Detection	14
2.4	Additional Notes	15
3 St	tamp Module Mounting	16
3.1	Dimensions and Contacts Stamp Module	16
3.2	Layout on the Target System	17
3.3	Handling and Soldering	21
4 Ir	nstalling Software and Starting the Hardware	22
5 Co	omponents of the Evaluation Board	24
5.1	USB (Supply Voltage)	24
5.2	Status LEDs	25
5.3	CAN Connector	27
5.4	Internal Termination of the High-speed CAN Bus	28
5.5	Connector for Time Stamp Synchronization	29
5.6	Prototyping Area	30

.PEAK

5.7 Reset Button	31
5.8 Mounting Holes (Dimension Drawing)	32
6 Software and API	33
6.1 Monitoring Software PCAN-View	33
6.1.1 Receive/Transmit Tab	35
6.1.2 Trace Tab	37
6.1.3 PCAN-CHIP USB Tab	38
6.1.4 Bus Load Tab	39
6.1.5 Error Generator Tab	40
6.1.6 Status Bar	42
6.2 Linking Own Programs with PCAN-Basic (Version 4 or Higher)	43
6.2.1 Features of PCAN-Basic	44
6.2.2 Principle Description of the API	45
6.2.3 Notes about the License	46
7 Technical Specifications	48
7.1 Stamp Module	48
7.2 Evaluation Board	49
Appendix A Dimension Drawing Cut Tape	51
Appendix B Certificates of Conformity	52
B.1 CE PCAN-Chip USB	52
B.2 UKCA PCAN-Chip USB	53
B.3 CE PCAN-Chip USB Eval	54
B.4 UKCA PCAN-Chip USB Eval	55
Appendix C Circuit Diagram of the Evaluation	
Board 56	
C.1 Overview	57
C.2 CAN	58

1 Introduction

For custom hardware designs a CAN connection can be implemented with the stamp module which communicates via USB 2.0 with the hardware. The integrated CAN controller supports the protocols CAN 2.0 A/B as well as CAN FD. The physical CAN connection is determined by external wiring. The stamp module with its singlesided mounting and plated half-holes is suitable for automatic assembly.

The optional PCAN-Chip USB Eval board simplifies the development of a custom board based on the stamp module. The board is equipped with the CAN transceiver NXP TJA1044GT.

In addition to the documentation for the integration of the stamp module, the scope of supply of the PCAN-Chip USB includes licenses for the Windows and Linux device drivers, for the CAN monitor PCAN-View, and for the PCAN-Basic API.

Note: This user manual refers to the PCAN-Chip USB and the optional developer board PCAN-Chip USB Eval.

1.1 Properties of the PCAN-Chip USB at a Glance

- High-Speed-USB 2.0 (compatible with USB 1.1 and 3.0)
- FPGA implementation of the CAN FD controller
- Complies with CAN specifications 2.0 A/B and FD
- CAN FD support for ISO and Non-ISO standard switchable
- Measurement of bus load including error frames on the physical bus

Induced error generation for incoming and outgoing CAN messages

PEAK

- 100-percent compatible with the USB device drivers and the software from PEAK-System
- Connections for 2 status LEDs
- 5 digital inputs/outputs + 1 analog input (access via PCAN-Basic API)
- Voltage supply 3.3 V DC
- Firmware update via USB
- Dimensions: 25 x 20 mm
- Extended operating temperature range of -40 to +85 °C (-40 to +185 °F)

1.2 Properties of the PCAN-Chip USB Evaluation Board at a Glance

- CAN bus connection via D-Sub, 9-pin (in accordance with CiA[®] 106)
- CAN transceiver NXP TJA1044GT
- └── USB connector type B, standard ESD protection
- Dual-color LED for CAN status and power supply
- Power supply via USB
- Extended operating temperature range of -40 to +85 °C (-40 to +185 °F)

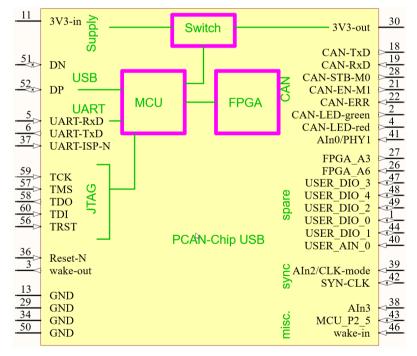
1.3 System Requirements for the Operation of the Evaluation Board

- A free USB port (USB 1.1, USB 2.0, or USB 3.0) on the computer or on a self-powered USB hub connected to the computer
- └─ Operating system Windows 11 (x64/ARM64), 10 (x64) or Linux

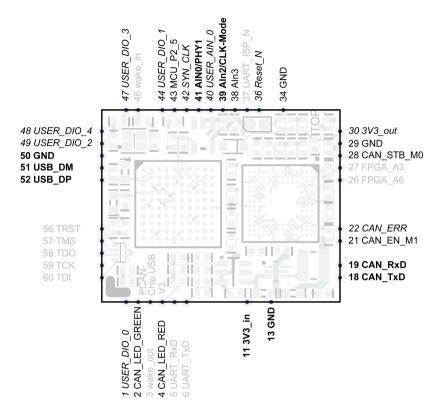
1.4 Scope of Supply PCAN-Chip USB

- Stamp module PCAN-Chip USB; delivery, depending on quantity, as cut tape or reel for automatic placement machines
- Documentation about the external circuits and the integration of the module incl. example circuit diagram
- One license per stamp module for:
 - Device driver for Windows and Linux
 - CAN monitor PCAN-View for Windows
 - Programming interface PCAN-Basic for the development of applications with CAN connection
 - Programming interfaces for standardized protocols from the automotive sector

The license fees for CAN to Robert Bosch GmbH are included.


1.5 Scope of Supply PCAN-Chip USB Eval

- PCAN-Chip USB Evaluation Board with soldered stamp module
- USB connection cable
- Further scope of supply as for PCAN-Chip USB


2 External Circuits Stamp Module

This chapter describes the functions of each port (contact) on the stamp module and contains instructions for external circuits. The circuit diagram in Appendix A on page 51 provides further criteria for external circuits.

2.1 Connectors

Figure 1: Block diagram PCAN-Chip USB

PEAK

Syst

Figure 2: Signal assignment at the contacts on the stamp module, numbering from 1 to 60 counterclockwise, pitch 50 mil (1.27 mm)

Legend:

Bold:	required connection	
Normal:	recommended connection	
Italic:	optional connection	

9

Contact no.	Signal	Function Connection	
1	USER_DIO_0	<i>Digital input/output, μC pin [1], software access via PCAN-Basic API</i>	Free for customer application
2	CAN-LED- green	CAN status LED (green), μC pin [1] - On: initialized by driver - Slow blinking: connection to software application - Fast blinking: CAN data transfer	Via series resistor to LED green anode (6 mA max.)
3	wake-out	Reserved for wake-up output (not implemented in the firmware)	Do not connect
4	CAN-LED-red	CAN error LED, μC pin [1] - Blinking: data error CAN	Via series resistor to LED red anode (6 mA max.)
5	UART-RxD	Reserved	Do not connect
6	UART-TxD	Reserved	Do not connect
11	3V3-in	Module supply 3.3 V	Supply from power unit: 3.3 V ±0.15 V, min. 150 mA
13	GND	Module GND	Low impedance, short connection to the GND plane of the mother- board
18	CAN-TxD	CAN data, outgoing, FPGA pin [2]	Tx transceiver, pull-up recommended
19	CAN-RxD	CAN data, incoming, FPGA pin [2]	Rx transceiver
21	CAN-EN-M1	Enable signal for CAN transceiver, µC pin [1]	Depending on trans- ceiver type, see circuit diagram on page 58
22	CAN-ERR	Reserved for CAN-ERR (not processed by the firmware) CAN-ERR output CAN transceived	
26	FPGA_A6	Reserved	Do not connect
27	FPGA_A3	Reserved	Do not connect
28	CAN-STB-M0	Standby signal for CAN transceiver, μC pin [1]	Depending on trans- ceiver type, see circuit diagram on page 58

Contact no.	Signal	Function	Connection	
29	GND	Module GND	Low impedance, short connection to the GND plane of the mother- board	
30	3V3-out	3.3-Volts output for supply of external components - ON when supply power is present (μC firmware initialized) - OFF if supply power is not present or USB Suspend	Free for customer application	
34	GND	Module GND	Low impedance, short connection to the GND plane of the mother- board	
36	Reset-N	Module reset Parallel to the OC output of the module's reset chip (3.3-Volts monitoring) at the reset input of the μ C; pull-up 1 k Ω on the module	<i>If required, to Low- active (open collector) reset of the overall system; no external pull-up!</i>	
37	UART-ISP-N	Boot source UART, μ C pin, pull- up 10 k Ω on the module	Do not connect	
38	Aln3	Reserved	Pull-down 4.7 kΩ	
39	Aln2/CLK- Mode	Activation and master-slave selection for synchronization of multiple chip modules (see section 2.2 on page 13), μC pin	 Pull-down 4.7 kΩ for stand-alone Pull-up und pull-down 4.7 kΩ for Sync master Pull-up 4.7 kΩ for Sync slave 	
40	USER_AI_0	Analog input 0 – 3.3 V, 10 bit, μC pin, software access via PCAN-Basic API	Connection of a voltage to be measured in the range of 0 – 3.3 V, protective circuit recommended	
41	Aln0/PHY1	Analog input 0 – 3.3 V, Determination/detection CAN transceiver type (see section 2.3 on page 14)	Resistor to GND (value: see section 2.3 on page 14)	

Contact no.	Signal	Function	Connection
42	SYN-CLK	Synchronization clock I/O using multiple modules (see section 2.2 on page 13)	Connection SYN-CLK of all modules, series resistor 33 Ω at the output of the Sync master
43	MCU_P2_5	Reserved μC pin [1]	Pull-down 10 kΩ
44	USER_DIO_1	<i>Digital input/output, μC pin [1], software access via PCAN-Basic API</i>	Free for customer application
46	wake-in	Reserved for wake-up input (not implemented in the firmware), μ C pin, pull-up 4.7 k Ω on the module	Do not connect
47	USER_DIO_3	Digital input/output, μC pin [1], software access via PCAN-Basic API, pull-down 4.7 kΩ on the module	Free for customer application
48	USER_DIO_4	Digital input/output, μC pin [1], software access via PCAN-Basic API	Free for customer application
49	USER_DIO_2	Digital input/output, μC pin [1], software access via PCAN-Basic API	Free for customer application
50	GND	Module GND	Low impedance, short connection to the GND plane of the mother- board
51	USB-DM	USB data, negative, μC pin, no protective circuit on the module	USB - DM ESD protection and common mode filter recommended
52	USB-DP	USB data, positive, µC pin, no protective circuit on the module	USB - DP ESD protection and common mode filter recommended

Contact no.	Signal	Function	Connection
56	TRST		
57	TMS		
58	TDO	Reserved JTAG	Do not connect
59	ТСК		
60	TDI		

Legend:

Bold:	required connection	
Normal:	recommended connection	
Italic:	optional connection	
Gray:	no connection	

2.2 Synchronization of Several Stamp Modules

When using several stamp modules, a synchronization of the time stamps for the CAN messages can be done. This happens by connecting the SYN-CLK port (42) of all stamp modules.

The analog input Aln2/CLK-Mode (39) is used to configure the synchronization. One stamp module is the master, all others are slaves.

Mode	Voltage at Aln2/CLK-Mode (39)	Circuit recommendation
Stand-alone	0 V (GND)	Pull-down 4.7 kΩ
Slave (Clk in)	3.3 V (supply)	Pull-up 4.7 kΩ
Master (Clk out)	1.65 V	Voltage divider with pull-up and pull-down, each 4.7 $\mbox{k}\Omega$

2.3 CAN Transceiver Type Detection

Depending on the detected CAN transceiver type, the firmware of the PCAN-Chip USB adapts its use of the control signals to the CAN transceiver

The CAN transceiver type is detected by the stamp module with the proportion of the input voltage at the analog input Aln0/PHY1 (41) to 3.3 V. The voltage divider is recommended with a resistor of 1 k Ω against 3.3 V and a resistor against ground, according to the following table.

Transceiver type	Voltage proportion at Aln0/PHY1 (41)	Resistor against ground
TH8056 Single-wire CAN SAE J2411	20 %	270 Ω
TJA1055 Low-speed CAN ISO 11898-3	40 %	680 Ω
TJA1044GT High-speed CAN FD ISO 11898-2	70 %	2400 Ω
82C251 High-speed CAN ISO 11898-2	80 %	3900 Ω
TJA1041 High-speed CAN ISO 11898-2	90 %	9100 Ω

If you implement another CAN transceiver, compare its properties with the ones of the CAN transceivers listed here in order to select the appropriate voltage proportion.

2.4 Additional Notes

- Supplied with 3.3 V DC, core supply is generated within the PCAN-Chip USB
- Stamp module without protection circuits; external protective circuits required (see 2.1 Connectors on page 8 and Appendix C *Circuit Diagram of the Evaluation Board* on page 56)
- CAN transmission mode (OSI layer 1) is determined by the external CAN transceiver, connections for control and status lines are available
- Status indication with two external LEDs (series resistors required)
- Firmware update possible via USB

3 Stamp Module Mounting

The stamp module with its single-sided mounting and plated halfholes is suitable for automatic assembly.

Attention! Electrostatic discharge (ESD) can damage or destroy components on the stamp module. Take precautions to avoid ESD when handling the stamp module.

3.1 Dimensions and Contacts Stamp Module

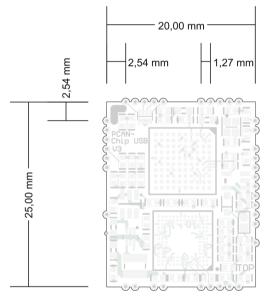


Figure 3: Dimensions of the stamp module (figure not in original size)

Numbering system for contacts: start is on the right to the corner marking, raising numbers counterclockwise, 17 contact positions on the long edge, 13 on the short one (results in contact positions 1 to 60), not all positions with contacts

DF.

 Contacts: half holes with metallization on the board edge, extended on the bottom side of the board as pads

3.2 Layout on the Target System

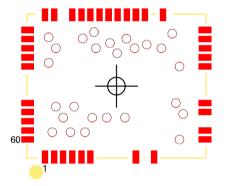


Figure 4: Footprint of the stamp module on the target system (crosshair: zero point of coordinates, red circles: keep-out areas)

The footprint of the stamp module is also available as file in different types:

- CAD data
- Library for Altium Designer

Connection Pads

We recommend the following properties for the pads on the target system in order to connect the stamp module:

- Rectangular, 0.9 x 1.8 mm
- Solder Stop Exemption +0.05 mm (2 mil)
- Paste 0 mm

The coordinates of the connection points of the stamp module are given in the following table related to the center of module:

Connection	Coordinates [mm]	
point	х	Y
1	-9.96	-9.32
2	-8.69	-9.32
3	-7.42	-9.32
4	-6.15	-9.32
5	-4.88	-9.32
6	-3.61	-9.32
11	2.74	-9.32
13	5.28	-9.32
18	11.82	-7.47
19	11.82	-6.20
21	11.82	-3.66
22	11.82	-2.39
26	11.82	2.70
27	11.82	3.97
28	11.82	5.24
29	11.82	6.51
30	11.82	7.78
34	6.55	9.32
36	4.01	9.32
37	2.74	9.32
38	1.47	9.32

Connection	Coordinates [mm]	
point	х	Y
39	0.20	9.32
40	-1.07	9.32
41	-2.34	9.32
42	-3.61	9.32
43	-4.88	9.32
44	-6.15	9.32
46	-8.69	9.32
47	-9.96	9.32
48	-11.82	7.78
49	-11.82	6.51
50	-11.82	5.24
51	-11.82	3.97
52	-11.82	2.70
56	-11.82	-2.38
57	-11.82	-3.65
58	-11.82	-4.92
59	-11.82	-6.19
60	-11.82	-7.46

Keep-out areas

The stamp module lies flat on the target system and has several bare areas on its bottom side (test points). Therefore, the top layer of the target system must not have traces or vias in several keep-out areas beneath the stamp module.

In Figure 4 above the keep-out areas are indicated by circles (diameter 1.27 mm = 50 mil). The following table contains the center point coordinates of the keep-out areas related to the center of the stamp module.

Keep-out area (test point)	Coordinates [mm]	
	х	Y
TP1	-2.85	5.25
TP2	9.34	-3.90
TP3	7.83	7.27
TP4	1.21	-4.41
TP5	1.41	6.55
TP6	-3.36	-4.41
TP7	6.29	5.24
TP8	-1.32	-4.41
TP9	-5.90	-2.88
TP10	2.57	5.23
TP11	-7.41	-4.41
TP12	-8.44	-2.88
TP13	-4.37	-6.44
TP14	-6.40	-6.44
TP15	-9.46	3.20
TP16	-8.44	5.24
TP17	-3.11	7.51
TP18	-4.68	6.53
TP19	-9.45	6.76
TP20	8.32	-2.38
TP21	8.83	2.70
TP22	8.84	-7.47
TP23	-8.94	-6.44
TP24	4.26	5.74
TP25	-0.88	5.98
TP26	0.12	4.54

3.3 Handling and Soldering

An MSL (Moisture Sensitivity Level) of 3 applies to the stamp module. This value refers to the moisture sensitivity during packaging, storage, and assembly.

- Note for the soldering process:
- Only <u>one-time</u> soldering of the stamp module on the target hardware
- Peak reflow temperature of 260 °C (+0/-5 °C) in a time window of 10 to 30 seconds

4 Installing Software and Starting the Hardware

For operation of the PCAN-Chip USB under Windows, the installation of the standard driver package from PEAK-System is necessary. Exemplary the start of the evaluation board which holds the PCAN-Chip USB is described in this chapter.

Install the driver for the PCAN-Chip USB on your PC:

- 1. Download the device driver setup from our website: www.peak-system.com/quick/DL-Driver-E
- 2. Unpack the file PEAK-System_Driver-Setup.zip.
- 3. Double-click the file PeakOemDrv.exe.

The driver setup starts.

4. Follow the program instructions.

Connect the evaluation board:

 With the supplied USB cable, connect the USB socket on the evaluation board and the PC. The evaluation board is supplied with power and the PCAN-Chip USB is interconnected to the operating system.

The green LEDs D1 "3V3power" and D2 "3V3sw" are on (position: see figure Figure 5 below).

Windows detects the new hardware and completes the driver installation.

2. Check the LED D5 "Status". If the LED is green, then the driver was initialized successfully.

The evaluation board with the PCAN-Chip USB is ready for use.

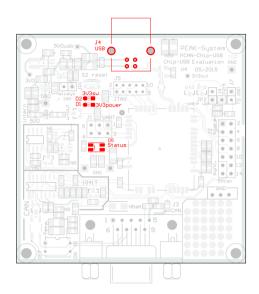


Figure 5: Position of the USB socket and the status LEDs

Unplugging the USB Connection

On Windows, the icon for removing hardware safely is <u>not</u> used with the PCAN-Chip USB. You can unplug the PCAN-Chip evaluation board from the computer without any preparation.

5 Components of the Evaluation Board

This chapter describes the most important components of the PCAN-Chip USB evaluation board. For additional details, refer to the circuit diagram in Appendix A on page 51.

5.1 USB (Supply Voltage)

The evaluation board is supplied with power via the USB cable connected at the USB socket type B (position J4). Furthermore, a connection is established via USB between the PCAN-Chip USB and a PC.

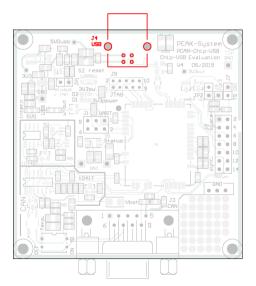


Figure 6: Position of the USB connector

5.2 Status LEDs

The PCAN-Chip USB evaluation board has three status LEDs.

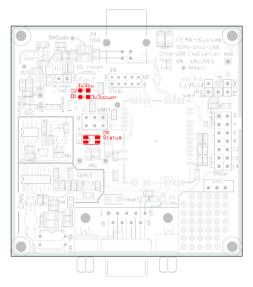


Figure 7: Positions of the status LEDs

LED D5 "Status"

The LED indicates the status of the stamp module PCAN-Chip USB associated with the device driver that is installed on the connected computer.

Indication	Meaning
Green on	There's a connection to a driver of the operating system.
Green slow blinking	A software application is connected to the stamp module.
Green quick blinking	Data is transmitted via the connected CAN bus.
Red blinking	An error is occurring during the transmission of CAN data.

LEDs D1 "3V3power" and D2 "3V3sw"

Both LEDs indicate the status of the supply voltage of 3.3 Volts which are generated on the evaluation board out of the 5 Volts from the USB connection.

LED position	Indication	Meaning
D1 "3V3power"	Green on	The evaluation board receives supply voltage.
D2 "3v3sw"	Green on	The stamp module receives supply voltage.

5.3 CAN Connector

The 9-pin D-Sub plug on position J3 is used as CAN connector. The pin assignment of the CAN connector corresponds to the specification $CiA^{(0)}$ 106.

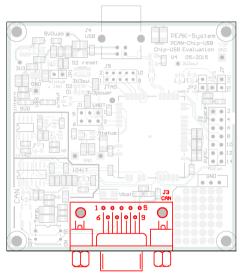


Figure 8: Position of the CAN connector

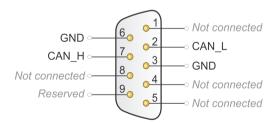


Figure 9: Assignment of the D-Sub male connector for CAN

5.4 Internal Termination of the High-speed CAN Bus

If the evaluation board is connected to one end of the High-speed CAN bus and the CAN bus is not terminated at that end, an internal termination of 120 Ohms can be activated on the evaluation board with the DIP switches at position S1. <u>Both</u> DIP switches 1 and 2 must be set to ON.

At delivery, both DIP switches are set to OFF. The internal termination is not activated.

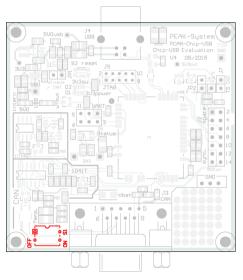


Figure 10: Position of the DIP switches (S1) for the termination

5.5 Connector for Time Stamp Synchronization

On position J7 is a connector for synchronization of time stamps if several stamp modules (PCAN-Chip USB) are used in a system.

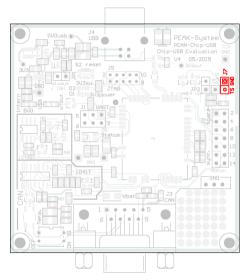


Figure 11: Position of connector J7

See section 2.2 *Synchronization of Several Stamp Modules* on page 13 for further information.

5.6 Prototyping Area

The PCAN-Chip USB evaluation board has 39 soldering pads (vias) in a 100-mil grid. They don't have any connection to the electronics on the evaluation board. Small circuits can be added here to the inputs and outputs.

Above are 3 additional soldering pads for connections to ground (GND).

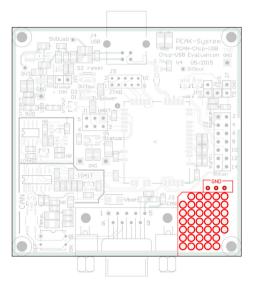


Figure 12: Position of the prototyping area

5.7 Reset Button

With the reset button on position S2, you can perform a hardware reset.

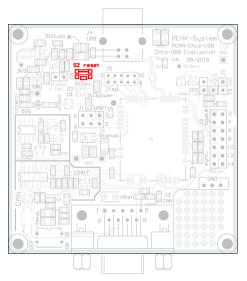


Figure 13: Position of the reset button

5.8 Mounting Holes (Dimension Drawing)

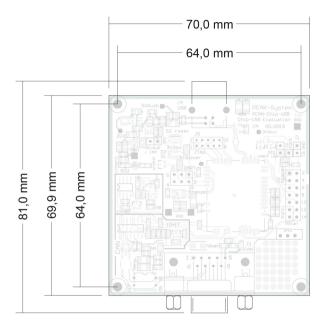


Figure 14: Main dimensions of the evaluation board (figure not in original size)

6 Software and API

This chapter covers the provided software PCAN-View and the programming interface PCAN-Basic.

6.1 Monitoring Software PCAN-View

PCAN-View for Windows is a simple CAN monitoring program for viewing, transmitting, and logging CAN and CAN FD messages.

Note: This chapter describes the use of PCAN-View with a CAN FD interface.

Figure 15: PCAN-View for Windows

Do the following to start and initialize PCAN-View:

Open PCAN-View via the Windows Start menu. 1.

The **Connect** dialog box appears.

🔗 Connect 🛛 🗙 🗙				
PCAN-View				
Available PCAN hardware:				
PCAN-PCI at PCI Bus 7, Device 13, Channel 1				
CAN-USB FD: Device 30h				
<u>Clock Frequency:</u> Nominal Bit rate: ☑ Data Bit rate:				
24 MHz V 1 MBit/s V 2 MBit/s V				
Filter settings				
Standard c ana at a T TT				
Extended From: 000 (Hex) To: 7FF (Hex)				
Listen-only mode OK Cancel 2 Help				

Figure 16: Selection of the hardware and parameters

- 2. Select the desired CAN interface (for some interfaces also the CAN channel) from the **Available PCAN Hardware** list.
- 3. Select the **Clock Frequency**. This determines which bitrates are available in the following.
- 4. Select the **Nominal Bitrate** which is used for the arbitration phase of CAN FD frames (max. 1Mbit/s).
- 5. Enable the **Data Bitrate** checkbox and select a bitrate from the list below. This is the raised transfer rate for the data fields of CAN FD frames.
- **Note:** Both bitrates must match the ones from other participants on the CAN bus.

Tip: Click on the arrow button (**)** if you want to use userdefined bitrates. 6. Under **Filter settings**, you can limit the range of CAN IDs to be received, either for standard frames (11-bit IDs) or for extended frames (29-bit IDs).

PEAK

- 7. Activate the **Listen-Only mode** if you do not actively participate in the CAN traffic and just want to observe. This also avoids an unintended disruption of an unknown CAN environment (e.g. due to different bit rates).
- 8. Finally confirm the settings in the dialog box with **OK**. The main window appears (see Figure 17).

PCAN-View <u>File CAN Edit Transmit View Trace H</u>elp 📔 🔒 🔗 🍕 🛶 📉 📨 🐰 🗈 👘 🛑 💵 🕘 😨 🏹 🗒 Receive / Transmit 🛛 🚥 Trace 🛛 🚓 PCAN-Chip USB 🗍 🏧 Bus Load 🛛 🛕 Error Generato CAN-ID Data Cycle Time Type Length Count 180F2000h FO BRS 11 43 53 60 00 00 59 2C 34 D0 F0 66 00 66 200,3 64 125 67 61 67 68 73 68 68 73 64 67 03 64 69 00 67 7A 60 00 35 74 00 39 75 35 33 35 6A 33 30 30 30 33 35 30 33 30 65 00 6A 73 67 30 Recei 35 33 00 30 04 67 64 6E 180E3000h 350.4 70 180F4000h B5 650.3 15 67 A5 42 54 24 A1 237 180F5000h 100,3 CAN-ID Length Data Cycle Time Count Type Trigger Comment 170F2000F 11 43 53 6A 53 8A 59 2C 200 114 Time 170F5000h 15 67 A5 42 54 24 A1 ✓ 100 225 Time 170F4000h B5 ✔ 650 35 Time 11 22 ✓ 350 ✓ 100 170E3000b 63 Time E0 885 35 6F 35 68 6C 77 65 6B 74 216 180F1000h 64 Time 6E 6E 20 35 32 33 35 6C 33 6B 35 33 F6 6B 35 6E 30 30 20 33 35 30 33 30 72 30 68 65 72 30 20 33 34 36 30 33 30 65 30 72 68 65 30 68 65 72 30 68 20 65 72 30 68 30 72 onnected to hardware PCAN-Chip USB 😽 | Bit rate: 1 MBit/s / 2 MBit/s

6.1.1 Receive/Transmit Tab

Figure 17: Receive/Transmit tab

The **Receive/Transmit** tab is the main element of PCAN-View. It contains two lists, one for received messages and one for the transmit messages. The CAN data format is hexadecimal by default.

Do the following to transmit a CAN FD message:

 Select the menu command Transmit > New Message (alternatively a or Ins).

The New Transmit Message dialog box appears.

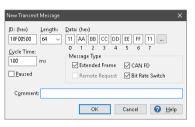


Figure 18: Dialog box New Transmit Message

- 2. Enable the **CAN FD** checkbox to define a CAN FD message with a maximum length of 64 data bytes.
- Enter the ID, the data Length in Bytes, and the Data for the new CAN message. With a length of more than 8 bytes, click on and enter the data bytes in the editor.
- **Note**: With program version 4 of PCAN-View, the DLC field was renamed to **Length**. Latter reflects the actual data length.
 - 4. The **Cycle Time** field indicates if the message will be transmitted manually or periodically. Enter a value greater than 0 to transmit periodically. Enter the value 0 to transmit only manually.
 - 5. Enable **Bit Rate Switch** in order to transmit the data of a CAN FD message with the data bitrate.
 - 6. Confirm the entries with **OK**.

The created transmit message appears on the **Receive/Transmit** tab.

 Trigger selected transmit messages manually with the menu command Transmit > Send (alternatively Space bar). The manual transmission for CAN messages being transmitted periodically is carried out additionally.

DE

Tip: Using the menu command **File** > **Save** the current transmit messages can be saved to a list and loaded for reuse later on.

6.1.2 Trace Tab

Eile <u>C</u> AN	l <u>E</u> dit <u>T</u> ransmit	⊻iew T	race <u>H</u> elp						
9 🗐	8 8 •€ \$	< ⊠	XD			2 🖬			
🚊 Recei	ve / Transmit 🛛 💷	Trace	🕈 PCAN-Chip	USB 🛛	Bus Load	🛕 Error Ge	nerator		
oaused	3,0963 s	0,15 %	🖒 Ring Buffe	er Rx	: 59	Tx: 92	Status: 0	Errors: 0	
Time	CAN-ID	Rx/Tx	Туре	Length	Data				
2,7458	170F5000h	Tx	Data	7	15 67 A5 42	54 24 A1			
2,7458	170F3000h	Tx	Data	2	11 22				
2,7458	180F1000h	Tx	FD, BRS	64	35 6F 35 68 (SC 77 65 68 74 6	E 6E 20 35 32 33 35 6	5C 33 6B 35 33 F6 6B 35 .	
2,7534	180F2000h	Rx	FD, BRS	64	11 43 53 60	0 00 59 2C 34 0	00 F0 66 00 66 67 61 e	67 68 73 68 68 73 64 67 .	
2,7644	180F5000h	Rx	Data	7	15 67 A5 42	54 24 A1			
2,7960	170F4000h	Tx	Data	1	B5				
2,8459	170F2000h	Tx	Data	8	11 43 53 6A	53 8A 59 2C			
2,8459	170F5000h	Tx	Data	7	15 67 A5 42	54 24 A1			
2,8459	180F1000h	Tx	FD, BRS	64	35 6F 35 68	SC 77 65 68 74 6	5E 6E 20 35 32 33 35 6	5C 33 6B 35 33 F6 6B 35 .	
2,8562	180F3000h	Rx	Data	2	11 22				
2,8646	180F5000h	Rx	Data	7	15 67 A5 42	54 24 A1			
2,9463	170F5000h	Tx	Data	7	15 67 A5 42	54 24 A1			
2,9463	180F1000h	Tx	FD, BRS	64	35 6F 35 68	SC 77 65 68 74 6	E 6E 20 35 32 33 35 6	5C 33 6B 35 33 F6 6B 35 .	
2,9529	180F2000h	Rx	FD, BRS	64	11 43 53 60	0 00 59 2C 34 I	00 F0 66 00 66 67 61 e	67 68 73 68 68 73 64 67 .	
2,9643	180F5000h	Rx	Data	7	15 67 A5 42	54 24 A1			
3,0455	170F2000h	Tx	Data	8	11 43 53 6A	53 8A 59 2C			
3,0455	170F5000h	Tx	Data	7	15 67 A5 42	54 24 A1			
3,0455	180F1000h	Tx	FD, BRS	64	35 6F 35 68	SC 77 65 68 74 6	5E 6E 20 35 32 33 35 6	5C 33 6B 35 33 F6 6B 35 .	
3,0645	180F5000h	Rx	Data	7	15 67 A5 42	54 24 A1			
3,0963	170F3000h	Tx	Data	2	11 22				

Figure 19: Trace tab

On the **Trace** tab, the tracer (data logger) of PCAN-View is used to record the communication on a CAN bus. During this process, the messages are cached in the working memory of the PC. Afterwards they can be saved to a file.

The Tracer runs either in linear or in ring buffer mode. In linear buffer mode the logging is stopped as soon as the buffer is filled completely. The ring buffer mode overwrites the oldest messages by new ones as soon as the buffer is full.

6.1.3 PCAN-CHIP USB Tab

R PCAN-View					
<u>E</u> ile <u>C</u> AN <u>E</u> dit <u>T</u> ransmit <u>V</u> iew T <u>r</u> ace <u>H</u> elp					
📸 🖶 🔗 🙈 🛶 🖄 🐼 👗 🛍	▶ ■ ?	8			
🚊 Receive / Transmit 🛛 🚥 Trace 🛛 😽 PCAN-Chip USB	🏧 Bus Load 🛛 🛕 E	rror Generator			
PC	AN-Chip USB				
	Firmware:	2.2.1			
	Driver Version:	<u>4.1.0</u>			
and the second sec	Number of Channels:	1			
	Part No.:	IPEH-004025			
THE FRANK	Device ID:	0h Set			
-		0 - FFFFFFFFh			
	CAN FD ISO-mode:	On			
		Disable			
🥝 Connected to hardware PCAN-Chip USB 🚓 Bit rate: 1 ME	8it/s / 2 MBit/s Status:	ок	Overruns: 0	Q)(mt	Full: Q

Figure 20: PCAN-Chip USB tab

The **PCAN-Chip USB** tab shows information about the used CAN hardware, e.g. the current firmware version. Moreover, you can assign a **device ID** to a stamp module. Then it can be clearly identified during operation of several modules in one computer.

CAN FD ISO mode

The CAN FD standard that is defined in ISO 11898-1 is not compatible to the original protocol. PEAK-System takes this into account by supporting both protocol versions in their CAN FD interfaces.

You can switch to the CAN FD protocol used in the environment with the **Disable** / **Enable** button (Non-ISO or ISO).

6.1.4 Bus Load Tab

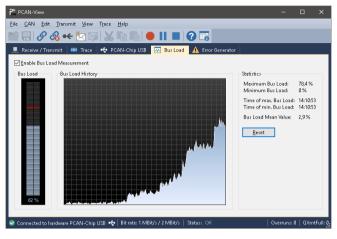


Figure 21: Bus Load tab

On the **Bus Load** tab, the current bus load, time course, and statistical information of the CAN channel are displayed. The CAN bus load reflects the utilization of transmission capacity.

6.1.5 Error Generator Tab

📸 PCAN-View				×
<u>F</u> ile <u>C</u> AN <u>E</u> dit <u>T</u> ransmit <u>V</u> iew	T <u>r</u> ace <u>H</u> elp			
📸 🔚 🔗 🗞 🗲 📉 🛛	2 🔏 🗈 🎼 🛑 🚺 🔳	? 🗖		
🚊 Receive / Transmit 🛛 🚥 Trace	🕂 🕂 PCAN-Chip USB 🛛 💀 Bus Load	🔺 Erre	or Genera	tor
Destroy Single Frame	Destroy Multiple Frames			
Bit <u>P</u> osition: 1	CA <u>N</u> -ID: 000h			
<u>D</u> o it	Bit Pos <u>i</u> tion: 1	•		
	Nu <u>m</u> ber of Frames to ignore: 0	•		
	Number of <u>F</u> rames to destroy: 0	•		
	Apply Disal	ble		
🥪 Connected to hardware PCAN-Chip	USB 🚓 Bit rate: 1 MBit/s / 2 MBit/s	Status: O		.:

Figure 22: Error Generator tab

Via the **Error Generator** tab, the communication on the CAN bus can be disturbed for testing purposes by 6 consecutive dominant bits. This is a violation of the CAN protocol on the CAN bus which must be recognized as an error by the connected CAN nodes.

You can destroy CAN frames with the error generator by one of two methods:

- once after activation
- repeatedly at specific intervals related to a CAN ID

The **Destroy Single Frame** area refers to the next CAN frame that is recognized by the adapter after activation.

Do the following to destroy a single CAN frame:

- 1. Enter the **Bit Position** where in the CAN frame the error is to be generated. The count includes the stuff bits.
- 2. Confirm the entries with **Do it**.

The next received or transmitted CAN frame will be destroyed at the selected bit position.

The **Destroy Multiple Frames** area refers to a CAN ID whose frames are to be destroyed in specific intervals.

Do the following to destroy multiple CAN frames:

- 1. Enter the **CAN ID** of the frame to be destroyed.
- 2. Enter the **Bit Position** where in the CAN frame the error is to be generated. The count includes the stuff bits.
- 3. The **Number of Frames to ignore** field specifies the number of CAN frames with the given ID that are ignored before a frame is destroyed.
- 4. The **Number of Frames to destroy** field specifies the number of CAN frames with the given ID that are destroyed consecutively.
- 5. Confirm the entries with **Apply** to activate the error generator.
- 6. Stop destroying further CAN frames with **Disable**.

6.1.6 Status Bar

🧟 Connected to hardware PCAN-Chip USB 🚓 | Bit rate: 1 MBit/s / 2 MBit/s | Status: OK | Overruns: 0 | QXmtFull: 0.

Figure 23: Indication of the status bar

The status bar shows information about the current CAN connection, about error counters (Overruns, QXmtFull), and shows error messages.

There's further information about the use of PCAN-View in the help which you can invoke in the program via the **Help** menu or with the F1 key.

6.2 Linking Own Programs with PCAN-Basic (Version 4 or Higher)

Figure 24: PCAN-Basic

Note: The intended use of PCAN-Basic requires compliance with the license rights. Read the license agreement for end users at www.peak-system.com/quick/eula.

The programming interface (API) PCAN-Basic provides basic functions for the connection of own programs to the CAN-Interface of PEAK-System. PCAN-Basic is the interface between the program and the device driver. In Windows operating systems this is a DLL (Dynamic Link Library) and in Linux operating systems an SO (Dynamic Shared Object). PCAN-Basic is designed to be crossoperating system compatible. Software projects can be ported between supported systems with little effort.

With the installation of the device driver package under Windows the DLL files of the API PCAN-Basic are placed in the system folder. Examples for all common programming languages as well as libraries and help files are available as download package at www.peak-system.com/quick/DL-Develop-E.

For Linux a download of the API is available under this link. For a use of PCAN-Basic another driver package with chardev driver is needed, because an access under SocketCAN is not possible. The "Driver Package for Proprietary Purposes", the user manual, and further information about the implementation can be found at www.peak-system.com/linux.

6.2.1 Features of PCAN-Basic

- API for developing applications with CAN and CAN FD connections
- Support for CAN specifications 2.0 A/B and FD
- Application development for the platforms Windows® 11 (x64/ARM64), 10 (x86/x64), and Linux
- Multiple PEAK-System applications and your own can be operated on a physical channel at the same time
- Use of a single DLL for all supported hardware types
- Use of up to 16 channels for each hardware type (depending on the PEAK CAN interface used)
- Simple switching between channels of a PEAK CAN interface
- Access to the CAN channels of a PCAN-Gateway via the new PCAN-LAN hardware type
- Driver-internal buffering of up to 32,768 CAN messages per CAN channel
- Precision of time stamps on received messages up to 1 µs (depending on the PEAK CAN interface used)

 Supports PEAK-System's trace formats version 1.1 and 2.0 (for CAN FD applications)

DFA

- Access to specific hardware parameters, such as listen-only mode
- Notification of the application through Windows[®] events when a message is received
- Support of CAN error frames
- Confirmation of physical transmission by CAN echo frames
- Extended system for debugging operations
- Multilingual debugging output
- Output language depends on operating system
- Debugging information can be defined individually
- Thread-safe API

Tip: An overview of the API functions is located in the header files. Detailed information about the PCAN-Basic API is in the text and help files (file name extensions .txt and .chm).

6.2.2 Principle Description of the API

The PCAN-Basic API is the interface between the user application and device driver. In Windows operating systems this is a DLL (Dynamic Link Library).

Accessing the CAN interface is divided into three phases:

- 1. Initialization
- 2. Interaction
- 3. Completion

Initialization

A CAN channel must be initialized before using it. This is done by the call of the CAN_Initialize function for CAN or the CAN_InitializeFD function for CAN FD. Depending on the type of the CAN hardware, up to 16 CAN channels can be opened at the same time. After a successful initialization the CAN channel is ready. No further configuration steps are required.

DF/

Interaction

For receiving and transmitting CAN messages, the functions CAN_Read and CAN_Write as well as CAN_ReadFD and CAN_WriteFD are available. Additional settings can be made, e.g. setting up message filters to confine to specific CAN IDs or setting the CAN controller to listen-only mode.

When receiving CAN messages, events are used for an automatic notification of an application (client). This offers the following advantages:

- The application no longer needs to check for received messages periodically (no polling).
- └─ The response time at reception is reduced.

Completion

To end the communication the function CAN_Uninitialize is called in order to release the reserved resources for the CAN channel, among others. In addition the CAN channel is marked as "Free" and is available to other applications.

6.2.3 Notes about the License

Device drivers, the interface DLL, and further files needed for linking are property of the PEAK-System Technik GmbH and may be used only in connection with a hardware component purchased from

PEAK-System or one of its partners. If a CAN hardware component of third-party suppliers should be compatible to one of PEAK-System, then you are not allowed to use or to pass on the driver software of PEAK-System.

If a third-party supplier develops software based on the PCAN-Basic and problems occur during the use of this software, consult the software provider.

7 Technical Specifications

7.1 Stamp Module

Power Supply			
Supply voltage	3.3 V DC ±0.15 V		
Current consumption	max. 130 mA		
Measures			
Size	25 x 20 mm (L x W)		
Weight	about 3 g		
Environment			
Operating temperature	-40 to +85 °C (-40 to +185 °F)		
Temperature for storage and transport	-40 to +100 °C (-40 to +212 °F)		
Relative humidity	15 to 90 %, not condensing		
USB			
Туре	2.0 (high-speed), compatible with USB 1.1 and USB 3.0		
Peculiarities	Supply of the stamp module via USB		
CAN			
Controller	FPGA implementation		
Protocols	CAN FD (ISO, non-ISO), CAN 2.0 A/B		
Channels	1		
Timestamp resolution	1 µs		
Physical transmission	Determined by the external CAN transceiver		
Bitrates	5 kbit/s to 12 Mbit/s (minimum and maximum depending on CAN transceiver)		

Module Electronics	
Signal levels at contacts	CMOS 3.3 V
Protective circuits	none
Power management	USB Suspend
Handling and Soldering	
Moisture Sensitivity Level	MSL 3
Peak reflow temperature	260 °C (±5 °C)
Packaging	
Туре	Cut tape or reel
Dimensions cut tape	See Appendix A <i>Dimension Drawing Cut Tape</i> on page 51
Dimensions reel	330 mm diameter and 45 mm width
Conformity	
RoHS	EU Directive 2011/65/EU (RoHS 2) + 2015/863/EU (revised list of restricted substances) DIN EN IEC 63000:2019-05

7.2 Evaluation Board

The stamp module is already soldered on the board. The technical specifications of the stamp module are noted in the previous section.

Connectors	
USB	USB socket type B High-Speed-USB 2.0 (compatible with USB 1.1 and 3.0)
CAN	D-Sub (m), 9 pins Pin assignment according to specification CiA® 106

CAN	
Transmission standards	CAN FD, ISO 11898-2 (High-speed CAN)
Transceiver	NXP TJA1044GT
CAN bitrates	25 kbit/s to 1 Mbit/s
CAN FD bitrates	25 kbit/s to 12 Mbit/s
Supply for external devices	D-Sub pin 1, 5 V, max. 50 mA, not assigned at delivery
Internal termination	120 $\Omega,$ via DIP switches, not activated at delivery
Power supply	
Supply voltage	+5 V DC (via USB port)
Current consumption	max. 160 mA
Measures	
Size of circuit board	70 x 70 mm (W x L)
Length USB cable	1.80 m
Weight	31 g
Environment	
O	

Operating temperature	-40 to +85 °C (-40 to +185 °F)
Temperature for storage and transport	-40 to +100 °C (-40 to +212 °F)
Relative humidity	15 to 90 %, not condensing

Conformity

RoHS 2

EU Directive 2011/65/EU (RoHS 2) + 2015/863/EU (revised list of restricted substances) DIN EN IEC 63000:2019-05

Appendix A Dimension Drawing Cut Tape

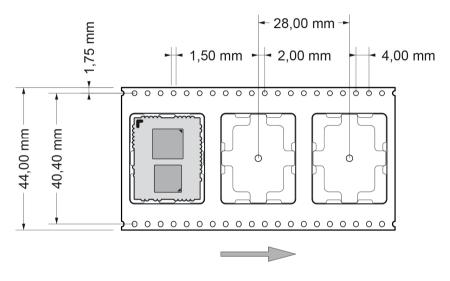


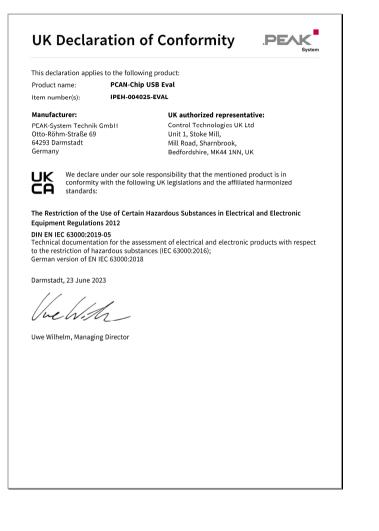
Figure 24: Dimensional drawing of the strip with rolling direction (see arrow); reel dimension: 330 mm diameter, 45 mm width

Appendix B Certificates of Conformity

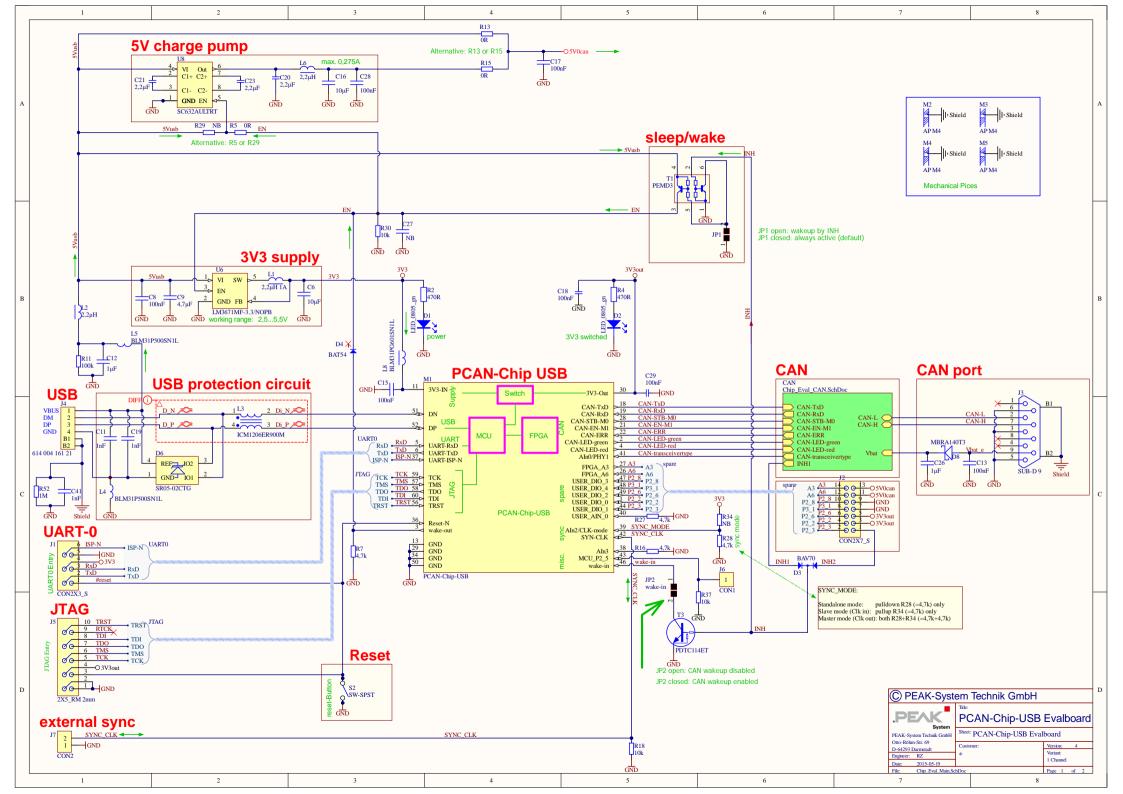
B.1 CE PCAN-Chip USB

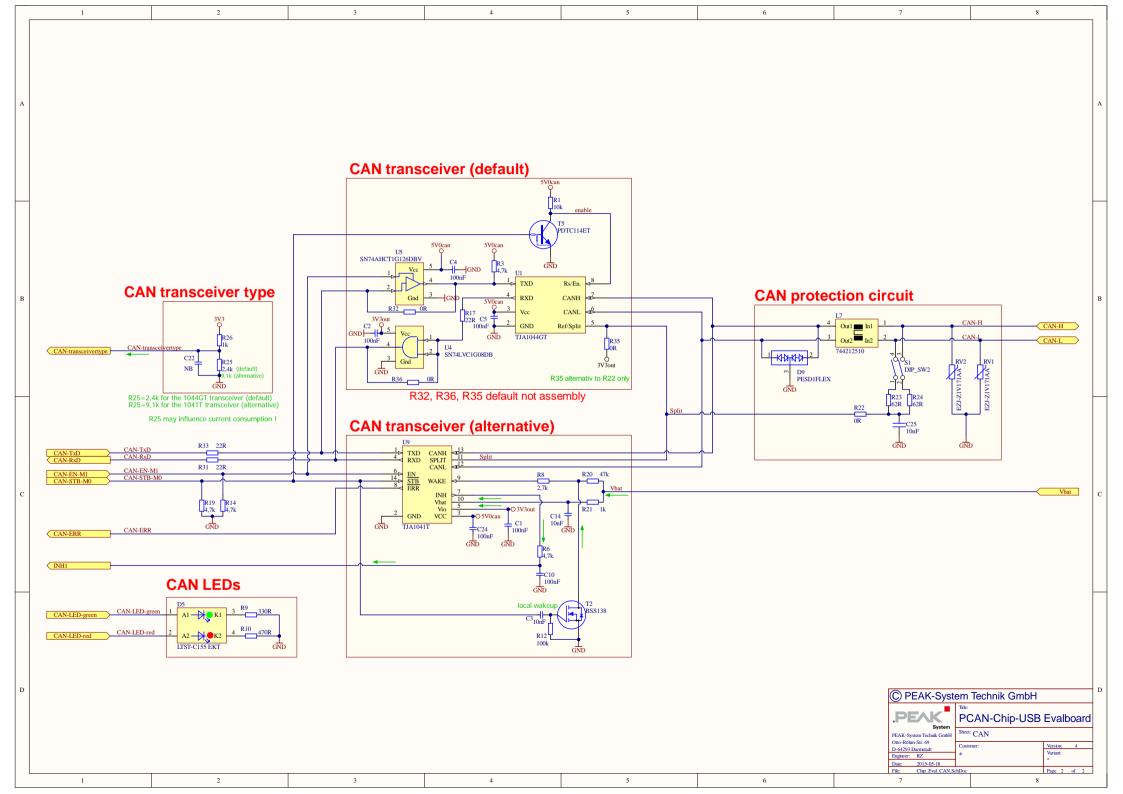
This declaration appl	ies to the following product:		
Product name:	PCAN-Chip USB		
Item number(s):	IPEH-004025		
Manufacturer:	PEAK-System Technik GmbH Otto-Röhm-Straße 69 64293 Darmstadt Germany		
	re under our sole responsibility that the mentioned product is in ry with the following directives and the affiliated harmonized standards:		
FU Directive 2011/65	;/EU (RoHS 2) + 2015/863/EU (amended list of restricted substances)		
	ation for the assessment of electrical and electronic products with respect azardous substances (IEC 63000:2016);		
Darmstadt, 23 June 2	023		
Une his	h		
Uwe Wilhelm, Manag	ing Director		

B.2 UKCA PCAN-Chip USB UK Declaration of Conformity PEAK This declaration applies to the following product: Product name: PCAN-Chip USB Item number(s): IPEH-004025 Manufacturer: UK authorized representative: PEAK-System Technik GmbH Control Technologies UK Ltd Otto-Röhm-Straße 69 Unit 1, Stoke Mill, 64293 Darmstadt Mill Road, Sharnbrook, Germany Bedfordshire, MK44 1NN, UK We declare under our sole responsibility that the mentioned product is in UK conformity with the following UK legislations and the affiliated harmonized CA standards: The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012 DIN EN IEC 63000:2019-05 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances (IEC 63000:2016); German version of EN IEC 63000:2018 Darmstadt, 23 June 2023 Uwe Wilhelm, Managing Director



B.3 CE PCAN-Chip USB Eval


B.4 UKCA PCAN-Chip USB Eval



Appendix C Circuit Diagram of the Evaluation Board

As a reference for the use of the evaluation board and for the implementation of the stamp module into self-designed systems, the circuit diagram of the evaluation board is shown on the next two pages.

