PCAN-ExpressCard 34
CAN Interface for the ExpressCard/34 Slot
User Manual

Document version 1.3.0 (2019-06-03)
Relevant products

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAN-ExpressCard 34</td>
<td>One CAN channel</td>
<td>IPEH-003004</td>
</tr>
</tbody>
</table>

PCAN® is a registered trademark of PEAK-System Technik GmbH. CANopen® and CiA® are registered community trade marks of CAN in Automation e.V.

All other product names mentioned in this document may be the trademarks or registered trademarks of their respective companies. They are not explicitly marked by “™” and “®”.

Copyright © 2019 PEAK-System Technik GmbH
Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH
Otto-Roehm-Strasse 69
64293 Darmstadt
Germany

Phone: +49 (0)6151 8173-20
Fax: +49 (0)6151 8173-29

www.peak-system.com
info@peak-system.com

Document version 1.3.0 (2019-06-03)
Contents

1 Introduction 5
 1.1 Properties at a Glance 5
 1.2 Prerequisites for Operation 6
 1.3 Scope of Supply 6

2 Installing the Software and the Card 7

3 Connecting the CAN Bus 8
 3.1 Connection over D-Sub Connector 8
 3.2 Cabling
 3.2.1 Termination 8
 3.2.2 Example of a Connection 9
 3.2.3 Maximum Bus Length 9

4 Operation 10
 4.1 Status LED 10
 4.2 Removing the Adapter 10

5 Software and API 11
 5.1 Monitor Software PCAN-View 11
 5.1.1 Receive/Transmit Tab 13
 5.1.2 Trace Tab 15
 5.1.3 PCAN-ExpressCard 34 Tab 16
 5.1.4 Status Bar 16
 5.2 Linking Own Programs with PCAN-Basic 17
 5.2.1 Features of PCAN-Basic 18
 5.2.2 Principle Description of the API 19
 5.2.3 Notes about the License 20

6 Technical Specifications 21
Appendix A CE Certificate 23
Appendix B Dimension Drawing 24
Appendix C Quick Reference 25
1 Introduction

The CAN adapter PCAN-ExpressCard 34 allows the connection of a CAN bus to embedded PCs and laptops with ExpressCard slots. A galvanic isolation of up to 300 Volts decouples the PC from the CAN bus.

The monitor software PCAN-View and the programming interface PCAN-Basic for the development of applications with CAN connection are included in the scope of supply.

Device drivers exist for different operating systems, so programs can easily access a connected CAN bus.

Tip: At the end of this manual (Appendix C) you can find a Quick Reference with brief information about the installation and operation of the PCAN-ExpressCard 34.

1.1 Properties at a Glance

- Card for ExpressCard slot
- Type ExpressCard/34 (compatible with ExpressCard/54 slots)
- High-speed CAN connection (ISO 11898-2)
- Bit rates from 5 kbit/s up to 1 Mbit/s
- Compliant with CAN specifications 2.0A (11-bit ID) and 2.0B (29-bit ID)
- CAN bus connection via D-Sub, 9-pin (in accordance to CiA® 303-1)
- FPGA implementation of the CAN controller (SJA1000 compatible)
NXP PCA82C251 CAN transceiver
Galvanic isolation on the CAN connection up to 300 V
Extended operating temperature range from -40 to 85 °C
(-40 to 185 °F)

Note: This manual describes the use of the PCAN-ExpressCard 34 with Windows. You can find device drivers for Linux and the corresponding application information on the provided DVD in the directory branch Develop and on our website under www.peak-system.com/linux.

1.2 Prerequisites for Operation
ExpressCard slot in the computer, type ExpressCard/34
Operating system Windows 10, 8.1, 7 (32/64-bit) or Linux (32/64-bit)

1.3 Scope of Supply
PCAN-ExpressCard 34 CAN interface
Device drivers for Windows 10, 8.1, 7 and Linux (32/64-bit)
CAN monitor PCAN-View for Windows
Programming interface PCAN-Basic for developing applications with CAN connection
Programming interfaces for standardized protocols from the automotive sector
Manual in PDF format
2 Installing the Software and the Card

This chapter covers the software setup for the PCAN-ExpressCard 34 under Windows and the installation in the computer.

Install the driver before you install the adapter.

Do the following to install the driver:

1. Start Intro.exe from the root directory of the DVD.
 The navigation program starts.
2. Select in the main menu Drivers and click on Install now.
3. Confirm the message of the User Account Control related "Installer database of PEAK Drivers".
 The driver setup starts.
4. Follow the program instructions.

Do the following to install the adapter:

1. Insert the PCAN-ExpressCard into an ExpressCard slot of your computer. The computer can remain powered on.
 Windows notifies that new hardware has been detected. The drivers are found and installed by Windows automatically.
2. Check the LED on the adapter. If the LED is red, then the driver was initialized successfully.
3 Connecting the CAN Bus

3.1 Connection over D-Sub Connector

A High-speed CAN bus (ISO 11898-2) is connected to the 9-pin D-Sub connector. The pin assignment corresponds to the specification CiA® 303-1.

Figure 1: Pin assignment High-speed CAN

3.2 Cabling

3.2.1 Termination

A High-speed CAN bus (ISO 11898-2) must be terminated on both ends with 120 Ohms. Otherwise, there are interfering signal reflections and the transceivers of the connected CAN nodes (CAN interface, control device) will not work.

The PCAN-ExpressCard 34 does not have an internal termination. Use the adapter on a terminated CAN bus.
3.2.2 Example of a Connection

![Diagram of a CAN connection](image)

Figure 2: Simple CAN connection

This example shows a connection between the PCAN-ExpressCard 34 and a control unit. The connection cable is terminated with 120 ohms at both ends.

3.2.3 Maximum Bus Length

High-Speed-CAN networks may have bit rates of up to 1 Mbit/s. The maximum bus length depends primarily on the bit rate.

<table>
<thead>
<tr>
<th>Bit rate</th>
<th>Bus length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mbit/s</td>
<td>40 m</td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>110 m</td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>240 m</td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>500 m</td>
</tr>
<tr>
<td>50 kbit/s</td>
<td>1.3 km</td>
</tr>
<tr>
<td>20 kbit/s</td>
<td>3.3 km</td>
</tr>
<tr>
<td>10 kbit/s</td>
<td>6.6 km</td>
</tr>
<tr>
<td>5 kbit/s</td>
<td>13.0 km</td>
</tr>
</tbody>
</table>

The listed values have been calculated on the basis of an idealized system and can differ from reality.
4 Operation

4.1 Status LED

The PCAN-ExpressCard 34 has a status LED which may be in one of the following conditions:

<table>
<thead>
<tr>
<th>Status LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>There's a connection to a driver of the operating system.</td>
</tr>
<tr>
<td>Slow blinking</td>
<td>A software application is connected to the CAN channel.</td>
</tr>
<tr>
<td>Quick blinking</td>
<td>Data is transmitted via the connected CAN bus.</td>
</tr>
</tbody>
</table>

4.2 Removing the Adapter

Under Windows the icon for removing hardware safely is not used with the PCAN-ExpressCard 34. You may remove the card from the computer without any preparation under Windows.
5 Software and API

This chapter covers the provided software PCAN-View and the programming interface PCAN-Basic.

5.1 Monitor Software PCAN-View

PCAN-View is simple Windows software for viewing, transmitting, and logging CAN and CAN FD messages.

Note: This chapter describes the use of PCAN-View with a CAN adapter.

Figure 3: PCAN-View for Windows
Do the following to start and initialize PCAN-View:

1. Open the Windows Start menu and select **PCAN-View**.

 The **Connect** dialog box appears.

 Figure 4: Selection of the specific hardware and parameters

2. Select an interface from the list.

3. From the dropdown list, select the **Bit rate** that is used by all nodes on the CAN bus.

 Tip: You can create custom bit rates by using the button (▶).

4. Under **Filter settings** you can limit the range of CAN IDs to be received, either for standard frames (11-bit IDs) or for extended frames (29-bit IDs).

5. Activate the **Listen-only mode** if you do not actively participate in the CAN traffic and just want to observe. This also avoids an unintended disruption of an unknown CAN environment (e.g. due to different bit rates).

6. Confirm the settings in the dialog box with **OK**. The main window of PCAN-View appears (see Figure 5).
5.1.1 Receive/Transmit Tab

The **Receive/Transmit** tab is the main element of PCAN-View. It contains two lists, one for received messages and one for the transmit messages. The CAN data format is hexadecimal by default.

Do the following to transmit a CAN message with PCAN-View:

1. Select the menu command **Transmit > New Message** (alternatively  or ).

 The New Transmit Message dialog box appears.

Figure 6: Dialog box new transmit message
2. Enter the ID, the data **Length** and the CAN message **Data**.

Note: With the program version 4 of PCAN-View, the DLC field was renamed to **Length**. Latter reflects the actual data length.

3. The field **Cycle Time** indicates if the message shall be transmitted manually or periodically. If you want to transmit the message periodically, you must enter a value greater than 0. For a manual-only transmission enter 0.

4. Confirm the entries with **OK**.

The created transmit message appears on the **Receive/Transmit** tab.

5. You trigger selected transmit messages manually with the menu command **Transmit > Send** (alternatively Space bar). The manual transmission for CAN messages being transmitted periodically is carried out additionally.

Tip: Using the menu command **File > Save** the current transmit messages can be saved to a list and loaded for reuse later on.
On the **Trace** tab, the data tracer (data logger) of PCAN-View is used for logging the communication on a CAN bus. During this process the messages are cached in the working memory of the PC. Afterwards, they can be saved to a file.

The Tracer runs either in linear or in ring buffer mode. The linear buffer mode stops the Tracer as soon as the buffer is full. The ring buffer mode overwrites the oldest messages by new ones as soon as the buffer is full.
5.1.3 PCAN-ExpressCard 34 Tab

The **PCAN-ExpressCard 34** tab contains some detailed information about the hardware and driver.

![Figure 8: PCAN-PCI tab (example)](image)

5.1.4 Status Bar

The status bar shows information about the current CAN connection, about error counters (Overruns, QXmtFull) and shows error messages.

![Figure 9: Example of the status bar](image)

You can find further information about the use of PCAN-View in the help which you can invoke in the program via the **Help** menu or with the **F1** key.
5.2 Linking Own Programs with PCAN-Basic

On the provided DVD, you can find files of the PCAN-Basic programming interface in the directory branch Develop. This API provides basic functions for linking own programs to CAN and CAN FD interfaces by PEAK-System and can be used for the following operating systems:

- Windows 10, 8.1, 7 (32/64-bit)
- Windows CE 6.x (x86/ARMv4)
- Linux (32/64-bit)
The API is designed for cross-platform use. Therefore software projects can easily be ported between platforms with low efforts. For all common programming languages examples are available.

Beginning with version 4, PCAN-Basic supports the new CAN FD standard (CAN with Flexible Data Rate) which is primarily characterized by higher bandwidth for data transfer.

5.2.1 Features of PCAN-Basic

- API for developing applications with CAN and CAN FD connection
- Access to the CAN channels of a PCAN-Gateway via the new PCAN-LAN device type
- Supports the operating systems Windows 10, 8.1, 7 (32/64-bit), Windows CE 6.x, and Linux (32/64-bit)
- Multiple PEAK-System applications and your own can be operated on a physical channel at the same time
- Use of a single DLL for all supported hardware types
- Use of up to 16 channels for each hardware unit (depending on the PEAK CAN interface used)
- Simple switching between channels of a PEAK CAN interface
- Driver-internal buffer for 32,768 messages per CAN channel
- Precision of time stamps on received messages up to 1 μs (depending on the PEAK CAN interface used)
- Supports PEAK-System’s trace formats version 1.1 and 2.0 (for CAN FD applications)
- Access to specific hardware parameters, such as listen-only mode
- Notification of the application through Windows events when a message is received
Extended system for debugging operations
- Multilingual debugging output
- Output language depends on operating system
- Debugging information can be defined individually

Tip: An overview of the API functions is located in the header files. You can find detailed information about the PCAN-Basic API on the provided DVD in the text and help files (file name extensions .txt and .chm).

5.2.2 Principle Description of the API

The PCAN-Basic API is the interface between the user application and device driver. In Windows operating systems this is a DLL (Dynamic Link Library).

The sequence of accessing the CAN interface is divided into three phases:
1. Initialization
2. Interaction
3. Completion

Initialization

A channel must be initialized before using it. This is done by the simple call of the function `CAN_Initialize` for CAN and `CAN_InitializeFD` for CAN FD. Depending on the type of the CAN hardware, up to 16 CAN channels can be opened at the same time. After a successful initialization the CAN channel is ready. No further configuration steps are required.

Interaction

For receiving and transmitting messages the functions `CAN_Read` and `CAN_Write` as well as `CAN_ReadFD` and `CAN_WriteFD` are available.
Additional settings can be made, e.g. setting up message filters to confine to specific CAN IDs or setting the CAN controller to listen-only mode.

When receiving CAN messages, events are used for an automatic notification of an application (client). This offers the following advantages:

- The application no longer needs to check for received messages periodically (no polling).
- The response time at reception is reduced.

Completion

To end the communication the function `CAN_Uninitialize` is called in order to release the reserved resources for the CAN channel, among others. In addition the CAN channel is marked as "Free" and is available to other applications.

5.2.3 Notes about the License

Device drivers, the interface DLL, and further files needed for linking are property of the PEAK-System Technik GmbH and may be used only in connection with a hardware component purchased from PEAK-System or one of its partners. If a CAN hardware component of third-party suppliers should be compatible to one of PEAK-System, then you are not allowed to use or to pass on the driver software of PEAK-System.

If a third-party supplier develops software based on the PCAN-Basic and problems occur during the use of this software, consult the software provider.
6 Technical Specifications

Connectors

<table>
<thead>
<tr>
<th>Computer</th>
<th>ExpressCard slot, type ExpressCard/34</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN</td>
<td>D-Sub (m), 9 pins</td>
</tr>
<tr>
<td></td>
<td>Pin assignment according to specification CiA® 303-1</td>
</tr>
</tbody>
</table>

CAN

Specification	ISO 11898-2, High-speed CAN 2.0A (standard format) and 2.0B (extended format)
Bit rates	5 kbit/s - 1 Mbit/s
Controller	FPGA implementation (SJA1000 compatible)
Transceiver	NXP PCA82C251
Galvanic isolation	Up to 300 V
Internal termination	none

Supply

| Supply voltage | 1.5 V und 3.3 V |
| Current consumption | 1.5 V: max. 180 mA
 | 3.3 V: max. 330 mA |

Measures

| Size | 108 x 37 x 20 mm (L x W x D)
 | See also dimension drawing in Appendix B on page 24 |
| Weight | 32 g |

Environment

Operating temperature	-40 - 85 °C (-40 - 185 °F)
Temperature for storage and transport	-40 - 85 °C (-40 - 185 °F)
Relative humidity	15 - 90 %, not condensing
Ingress protection (IEC 60529)	IP30
Conformity

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| EMV | Directive 2014/30/EU
 | DIN EN 55024:2016-05
 | DIN EN 55032:2016-02 |
| RoHS 2 | Directive 2011/65/EU
 | DIN EN 50581 VDE 0042-12:2013-02 |
Appendix A CE Certificate

EU Declaration of Conformity

This declaration applies to the following product:

Product name: PCAN-ExpressCard 34
Item number(s): IPEH-003004
Manufacturer: PEAK-System Technik GmbH
Otto-Roehm-Strasse 69
64293 Darmstadt
Germany

We declare under our sole responsibility that the mentioned product is in conformity with the following directives and the affiliated harmonized standards:

EU Directive 2011/65/EU (RoHS 2)
DIN EN 50581 VDE 0042-12:2013-02
Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances;
German version EN 50581:2012

EU Directive 2014/30/EU (Electromagnetic Compatibility)
DIN EN 55024:2016-05
Information technology equipment – Immunity characteristics – Limits and methods of measurement (CISPR 24:2010 + Cor.:2011 + A1:2015);
German version EN 55024:2010 + A1:2015
DIN EN 55032:2016-02
Electromagnetic compatibility of multimedia equipment - Emission Requirements (CISPR 32:2015);
German version EN 55032:2015

Darmstadt, 22 February 2019

[Signature]

Uwe Wilhelm, Managing Director
Appendix B Dimension Drawing

Figure 11: Side view and top view of the PCAN-ExpressCard 34

The figure does not show the actual size of the product.
Appendix C Quick Reference

Software/Hardware Installation under Windows

Install the driver from the supplied DVD, before you insert the PCAN-ExpressCard into a vacant ExpressCard slot. The card is recognized by Windows and the driver is initialized. The LED must light red.

Getting Started under Windows

Run the CAN monitor PCAN-View from the Windows Start menu as a sample application for accessing the PCAN-ExpressCard 34. For initialization of the card select the CAN connection and the CAN bit rate.

<table>
<thead>
<tr>
<th>Status LED</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>There's a connection to a driver of the operating system.</td>
</tr>
<tr>
<td>Slow blinking</td>
<td>A software application is connected to the CAN channel.</td>
</tr>
<tr>
<td>Quick blinking</td>
<td>Data is transmitted via the connected CAN bus.</td>
</tr>
</tbody>
</table>

High-speed CAN connector (D-Sub, 9 pins)