PCAN-Gatewavs

Connection of CAN Buses over IP networks

Developer Documentation

Relevant Products

Product name	Model	Part Number
PCAN-Ethernet Gateway DR	Industry	IPEH-004010
PCAN-Ethernet Gateway FD DR	Industry	IPEH-004012
PCAN-Wireless Gateway DR	Industry	IPEH-004011
PCAN-Wireless Gateway with D-Sub connectors	Industry	IPEH-004020
PCAN-Wireless Gateway with automotive connector	Automotive	IPEH-004020-A

PCAN® is a registered trademark of PEAK-System Technik GmbH. CANopen®, CANopen $\mathrm{FD} ®$, and $\mathrm{CiA}{ }^{\circledR}$ are registered EU trademarks of CAN in Automation e.V. Other product names in this document may be the trademarks or registered trademarks of their respective companies. They are not explicitly marked by ${ }^{\mathrm{TM}}$ or \circledR^{\circledR}.
© 2023 PEAK-System Technik GmbH
Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH
Otto-Röhm-Straße 69
64293 Darmstadt
Germany
Phone: +49 6151 8173-20
Fax: +4961518173-29
www.peak-system.com
info @ peak-system.com
Document version 1.6.3 (2023-06-21)

Content

1 Operating Mode 6
1.1 Communication between Two Gateways 6
1.2 Communication between Gateway and PC via the Virtual PCAN-Gateway 7
1.3 Communication between Gateway and PC via Sockets 8
1.3.1 Deactivate the Handshake 9
1.3.2 Structure of the transmitted CAN Data in the IP Frame 12
1.3.3 Optiona1 CRC32 Checksum 17
2 Exported Device Configurations 18
2.1 Feature Overview and Details 19
2.1.1 Configuring CAN IRQ Limits 20
2.2 Structure of the INI File (v1.2.0) 21
2.2.1 Genera1 21
2.2.2 LAN Interface 22
2.2.3 WLAN Interface 22
2.2.4 CAN Interfaces 23
2.2.5 GUI 24
2.2.6 Routes 24
2.2.7 Filter 25
2.3 Structure of the INI File (v1.3.0) 27
2.3.1 Genera1 27
2.3.2 LAN Interface 28
2.3.3 WLAN Interface 28
2.3.4 CAN Interfaces 29
2.3.5 GUI 30
2.3.6 Routes 30
2.3.7 Filter 31
2.4 Structure of the INI File (v1.4.1) 33
2.4.1 General 33
2.4.2 LAN Interface 34
2.4.3 WLAN Interface 34
2.4.4 CAN Interfaces 35
2.4.5 GUI 36
2.4.6 Routes 37
2.4.7 Filter 38
2.5 Structure of the INI File (v1.5.0) 40
2.5.1 General 40
2.5.2 LAN Interface 41
2.5.3 WLAN Interface 41
2.5.4 CAN Interfaces 42
2.5.5 GUI 43
2.5.6 Routes 44
2.5.7 Filter 45
2.6 Structure of the INI File (v2.0.1) 47
2.6.1 Genera1 48
2.6.2 LAN Interface 49
2.6.3 WLAN Interface 49
2.6.4 CAN Interfaces 50
2.6.5 GUI 52
2.6.6 Routes 53
2.6.7 Filter 54
2.6.8 LEDs 55
3 JSON Interface 57
3.1 Usage 58
3.1.1 Activation and Configuration 58
3.1.2 Access to the Interface 60
3.1.3 Structure and Sending of a Request 61
3.1.4 Access Permission 63
3.1.5 Response and Error Notifications 64
3.2 Commands 71
3.2.1 Get - Reading Settings 71
3.2.2 Set - Configuring Settings 73
3.2.3 Delete - Deleting a Route or Filter 75
3.2.4 Reset - Resetting a CAN Channel or a Route 76
3.2.5 Reboot - Restarting the PCAN-Gateway 77
3.2.6 He1p - Documentation 78
3.3 Elements 79
3.3.1 Device 79
3.3.2 CAN 80
3.3.3 LAN 85
3.3.4 WLAN 86
3.3.5 Route 88
3.3.6 Filter 93

1 Operating Mode

Three operation mode options are available for PCAN-Gateway modules:

In "normal" operation requires two of these devices and tunnels CAN through the IP network (see chapter 1.1 below). There are also the possibilities to communicate with a software of PEAK-System (see chapter 1.2 on page 7) or an own program (see chapter 1.3 on page 8).

1.1 Communication between Two Gateways

With the PCAN-Gateways, CAN buses can be connected via LAN or WLAN. CAN frames are wrapped into TCP or UDP message packets and then forwarded from one device to another. Based on this technology, it is possible to connect CAN networks over a great distance

The configuration of the gateways is done via a web interface. Therefore, the module must be connected to the PC via LAN or WLAN according to the model. Afterwards, a common web browser is suitable to access the device.

The device's web interface opens and displays public information about the device status and the message forwarding. In order to configure the device, a login on the website is required. Depending on the hardware, different settings are available.

In the following figure, the CAN messages from CAN bus A are transmitted over an IP network to bus B. In addition, the messages from bus B are sent to CAN bus A.

Figure 1: Bidirectional communication

This operating mode is described in detail in the manuals and the Quick Guide of the PCAN-Gateways.

1.2 Communication between Gateway and PC via the Virtual PCAN-Gateway

The Virtual PCAN-Gateway software package provides access for Windows computers to devices of the PCAN-Gateway product line over IP-based networks. Various LAN and WLAN network adapters can be used.

Analog to the bidirectional connection of two PCAN-Gateways, message forwarding with so-called routes must be set up between the hardware and the software.

At first, two routes have to be created on the configuration website of the hardware, one for sending and another for receiving. Then, the appropriate counterparts of these routes must be established within the configuration software.

Due to this connection, the PCAN-Gateways are being integrated in the established PCAN environment and can be used like a conventional PEAK CAN interface. For example, the traffic on the CAN channels can be displayed and traced by the PCAN-View CAN monitor.

Note: The software requires a PCAN-Gateway as a counterpart. It is not possible to establish a connection between two computers with the Virtual PCAN-Gateway.

Figure 2: Connection via the software Virtual PCAN-Gateway

The software is described in detail in the Virtual PCAN-Gateway manual.

1.3 Communication between Gateway and PC via Sockets

To establish a reliable transmission of CAN data over IP networks, two PCAN-Gateways are performing a so called handshake while setting up a route. This is the reason why such a message forwarding can only be made between devices of the PCANGateway product family.

Alternatively, it is possible to disable the handshake protocol for individual transmission routes. The data packets are then sent without any control mechanisms directly to the specified IP address. In this case the communication with the PCAN-Virtual Gateway is not possible.

As a counterpart, for example, a PC can receive the data with a simple software via a socket interface. The PC application must be based on standard sockets (Windows, Linux, or Android).

Figure 3: Connection via a Socket application
For this operating mode, the routes which will communicate with the PC must be specially configured. The so-called "Handshake protocol" should be switched off for each route via the web interface of the device (see chapter 1.3.1 below).

Without handshake no status information for the routes and their transmission are collected. Therefore, every control mechanism is disabled. As a result, the CAN data stream is transmitted and received in a simple socket structure. The corresponding protocol is described in chapter 1.3.2 on page 12.

1.3.1 Deactivate the Handshake

When creating or editing a route, you can disable the handshake.
Log in to the web interface of your PCAN-Gateway. First, the Expert user mode must be activated because the deactivation of the handshake is otherwise not possible.

System

Figure 4: PCAN-Gateway web interface:
Activation of the Expert display mode
Do the following to switch to Expert user mode:

1. Open the page Device > User Management.
2. Select the Expert mode from the drop-down menu under Display Mode Setting.
3. If the Reset after Login checkbox is set, Expert mode will only remain active for the current session. As soon as you log in again, it is disabled.
4. Confirm with Save Settings.

Do the following to turn off the handshake for an existing route:

1. Open the page Routing > Manage Routes.
2. Click on the pencil icon of the corresponding route to edit it.

Figure 5: PCAN-Gateway web interface: Editing a route
3. On the opened page Routing > Edit Route under Step 2: Status you can find an additional option to deactivate the handshake.
4. Activate the checkbox to switch off the handshake for this route.
5. Confirm the settings with Save Settings.

Note: The communication with the PCAN-Virtual Gateway is not possible without the handshake.

1.3.2 Structure of the transmitted CAN Data in the IP Frame

PCAN-Gateways allow the connection of various CAN buses over IP networks. For this CAN frames are wrapped in TCP or UDP messages packets and transmitted over the IP network from one device to another. If all the precautions are taken, you can also use a socket to send and receive CAN data via UDP or TCP.

Depending on the type of the CAN message and if the CRC feature is used, the CAN data is transmitted with a different structure in the IP frame. The possible data structures are shown in the following tables.

The values are stored in Network Byte order. The CAN data is stored as single bytes in ascending order. Whether you send or receive, the structure remains the same. With simple TCP/UDP implementations such as in embedded applications, it is possible to receive the TCP or UDP header in addition.

0
Note: Sample code is available for download: www.peak-system.com/quick/DPL-GW-Samples.

Data structure for CAN 2.0 A/B frames

Length	Field Name	Meaning	
2 Byte	Length	This field specifies the total length of the packet including this Length field in bytes. The maximum length of a classic CAN frame is 0×24, decimal 36 .	
2 Byte	Message Type	This field specifies the type of the message. The value 0×80 represents a classic CAN frame.	
8 Byte	Tag	Not used in the current version.	
4 Byte	Timestamp Low	Timestamp of CAN messages in $\mu \mathrm{s}$. The value has no effect on the transmission of frames. This information is purely informative.	
4 Byte	Timestamp High		
1 Byte	Channel	Not used in the current version. Note: The CAN channel is determined by the route configuration.	
1 Byte	DLC	The Data Length Count (DLC) indicates the length of the CAN data in bytes.	
2 Byte	Flags	The following flags are defined for this frame type: - 0×01 - Message is a Remote Transmission Request (corresponds to bit 30 in the ID field) - 0x02 - Message has an Extended ID (corresponds to bit 31 in the ID field)	
4 Byte	CAN ID	Bit 0-28 Bit 29 Bit 30 Bit 31	ID Fixed value 0 RTR 1 for Extended frame, 0 for Standard frame.
8 Byte	CAN Data	This field always contains 8×8 data bits. Note: Use only as many bytes as the DLC indicates. All the following bytes are available but invalid.	

Data structure for CAN FD frames

Length	Field Name	Meaning	
2 Byte	Length	This field specifies the total length of the packet including this Length field in bytes. The length of the packet for CAN FD frames is variable in contrast to the classic CAN frame. Only as many bytes as necessary are transmitted. The maximum length of a CAN FD frame is $0 \times 5 \mathrm{C}$, decimal 92.	
2 Byte	Message Type	This field specifies the type of the message. The value 0×90 represents a CAN FD frame.	
8 Byte	Tag	Not used in the current version.	
4 Byte	Timestamp Low	Timestamp of CAN messages in $\mu \mathrm{s}$. The value has no effect on the transmission of frames. This information is purely informative.	
4 Byte	Timestamp High		
1 Byte	Channel	Not used in the current version. Note: The CAN channel is determined by the route configuration.	
1 Byte	DLC	The Data Length Count (DLC) indicates the length of the CAN data in bytes.	
2 Byte	Flags	The following flags are defined for this message type: - 0x02 - Message has an Extended ID (corresponds to bit 31 in the ID field) - 0×10 - Message with Extended Data Length - 0×20 - Message with activated Bit Rate Switch - 0×40 - Message with set Error State Indicator bit	
4 Byte	CAN ID	Bit 0-28 Bit 29 Bit 31	ID Fixed value 0 1 for Extended frame, 0 for Standard frame.
N Byte	CAN Data	This field contains the CAN data bytes. The number of bytes transmitted corresponds to the length specified in the DLC field.	

Data structure for CAN 2.0 A/B frames with CRC

Length	Field Name	Meaning
2 Byte	Length	This field specifies the total length of the packet including this Length field in bytes. The maximum length of a classic CAN frame with additional CRC checksum is 0x28, decimal 40.
2 Byte	Message Type	This field specifies the type of the message. The value 0x81 represents a classic CAN frame with additional CRC checksum.
8 Byte	Tag	Not used in the current version.
4 Byte	Timestamp Low	Timestamp of CAN messages in μ s. The value has no effect on the transmission of frames. This information is purely informative.
4 Byte	Timestamp High	Not used in the current version. Note: The CAN channel is determined by the route configuration.
1 Byte	Channel	The Data Length Count (DLC) indicates the length of the CAN data in bytes.
1 Byte	DLC	The following flags are defined for this frame type: 0x01 - Message is a Remote Transmission Request (corresponds to bit 30 in the ID field)
2 Byte	Flags	0x02 - Message has an Extended ID (corresponds to bit 31 in the ID field)
4 Byte	CAN ID	Bit 0 - 28ID Bit 29 Bit 30 Bit 31 F Byted value 0 RTR 1 for Extended frame, 0 for Standard frame.
CAN Data	This field always contains 8 x 8 data bits. Note: Use only as many bytes as the DLC indicates. All the following bytes are available but invalid.	
CRC checksum. See the following chapter for details.		

Data structure for CAN FD frames with CRC

Length	Field Name	Meaning	
2 Byte	Length	This field specifies the total length of the packet including this Length field in bytes. The length of the packet for CAN FD frames is variable in contrast to the classic CAN frame. Only as many bytes as necessary are transmitted. The maximum length of a CAN FD frame with additional CRC checksum is 0×60, decimal 96.	
2 Byte	Message Type	This field specifies the type of the message. The value 0×91 represents a CAN FD frame with additional CRC checksum.	
8 Byte	Tag	Not used in the current version.	
4 Byte	Timestamp Low	Timestamp of CAN messages in $\mu \mathrm{s}$. The value has no effect on the transmission of frames. This information is purely informative.	
4 Byte	Timestamp High		
1 Byte	Channel	Not used in the current version. Note: The CAN channel is determined by the route configuration.	
1 Byte	DLC	The Data Length Count (DLC) indicates the length of the CAN data in bytes.	
2 Byte	Flags	The following flags are defined for this message type: - 0×02 - Message has an Extended ID (corresponds to bit 31 in the ID field) - 0×10 - Message with Extended Data Length - 0×20 - Message with activated Bit Rate Switch - 0×40 - Message with set Error State Indicator bit	
4 Byte	CAN ID	Bit 0-28 Bit 29 Bit 31	ID Fixed value 0 1 for Extended frame, 0 for Standard frame.
N Byte	CAN Data	This field contains the CAN data bytes. The number of bytes transmitted corresponds to the length specified in the DLC field.	
4 Byte	CRC32	CRC checksum. See the following chapter for details.	

1.3.3 Optiona1 CRC32 Checksum

CAN frames can be transmitted over the IP network with an additional CRC32 checksum in the IP packet. It is created from DLC, flags, CAN ID, and data of the CAN frame together with a CRC start value and polynomial. This option was introduced with software version 2.8.1 for classic CAN frames and for CAN FD frames with software version 1.0.0 of the PCAN-Ethernet Gateway FD DR.

The CRC option for routes can be configured via the JSON interface or the INI file. For a valid connection with CRC option, the CRC settings of the Send and Receive route must match.Note: The CRC option is not available for the Virtual PCANGateway at the moment.

CRC32 example for an incoming message:
Start value: 0×0
Polynomial: 0x04c11db7

The colored values DLC, flags, CAN ID, and CAN data are used for the calculation.

```
crc32([0x08, 0x00, 0x00, 0x00, 0x00, 0x01, 0x11, 0xFF, 0xEE, 0xDD,
0xCC, 0xBB, 0xAA, 0x99, 0x88]) = 0x20861949
```

There is no XOR with 0xFFFFFFFF at the end of the calculation. The CRC32 result is added to the message in little endian byte order.

2 Exported Device Configurations

The current device configuration, as well as the defined routes and filters, can be stored in the form of an INI file.

You can create, open, edit, and change the file with any text editor.
(1) Note: Editing the content may result in the rejection of an import. Only valid configuration files can be used for device restoration.

Do the following to export an INI file:

1. Log in into the web interface of your PCAN-Gateway.
2. Open the page Device $>$ Configuration.
3. By clicking the Export button under Export Configuration, you create the INI file.
4. Save the file to your PC.

2.1 Feature Overview and Details

Some features cannot be configured via the website or the JSON interface because advanced knowledge is required or due to their experimental context. However, configuration is possible using the downloaded INI file.

The following table shows the feature support of the different product types. Indicated software versions refer to the packages for the PCAN-Gateways or the PCAN-Ethernet Gateway FD DR (IPEH-004012).

Feature	IPEH- $\mathbf{0 0 4 0 1 0}$	IPEH- $\mathbf{0 0 4 0 1 1}$	IPEH- $\mathbf{0 0 4 0 2 0}$	IPEH- $\mathbf{0 0 4 0 1 2}$	Details
CAN auto resume	x	x	x	x	
CAN loopback mode	x	x	x	x	
CAN single shot mode	x	x	x	x	
CAN triple sampling	x	x	x		
CAN FD support				x	
Selectable clock frequency				x	
Configurable CAN IRQ limits				x from v 1.1 .1	see chapter 2.1 .1
Optional CRC32 checksum	x from $\mathrm{v2.8.1}$	x from $\mathrm{v2.8.1}$	x from $\mathrm{v2.8.1}$	x	see chapter

2.1.1 Configuring CAN IRQ Limits

(1)
Note: This feature is available for the PCAN-Ethernet Gateway FD DR (IPEH-004012) beginning with software version 1.1.1.

The CAN IRQ limits can be configured for each CAN interface to balance message latency, throughput, and CPU load. For this, two additional parameters are available:

Parameter	Default	Description
irq_time_limit	10	Specifies the time that the CAN interface waits until an interrupt is triggered. The parameter is set in a range from 1 to 15. The time limit results from the set value multiplied by $100 \mu \mathrm{~s}$.
irq_count_limit	8	Specifies the number of messages that have to be received by the CAN interface before an interrupt is triggered. The number is set in a range from 1 to 127.

With the default values, an interrupt is triggered either if 8 messages have been received or 1 millisecond has passed. Tracking the time starts with the first incoming message. Both, the IRQ message counter and time are reset if an interrupt was triggered.

To lower the latency of the CAN messages, a single or both parameters must be lowered. In this case, the interrupt load increases and the total message throughput decreases.

2.2 Structure of the INI File (v1.2.0)

The INI file is divided into different sections: general information, interfaces, routes, and filter.

Please note when editing:
\llcorner Field names do not distinguish between uppercase and lowercase letters.
\llcorner Values must not contain line breaks.
\llcorner The default values listed are used when no value has been defined.

2.2.1 General

Some of the values of General and Host can be configured via the web interface on the page Device > Configuration.

Field Name	Default	Description
GENERAL		
username	-	Not used.
description	-	User-defined description of the device.
lighttpdport	80	Not used.
kI15pwdn	0	Power Down on / off (function only for PCAN- Wireless Gateway; for details see manual)
HOST		
devicename	-	User-defined name of the device.

2.2.2 LAN Interface

Some of the values can be configured via the web interface on the page Network > LAN.

Field Name	Default	Description
UseDHCP	0	If not equal 0, the external DHCP server is used for IP configuration
IPv4	192.168 .1 .10	v4 IP address (e.g. 192.168.1.100)
Subnetmask	255.255 .255 .0	Subnet mask (e.g. 255.255.255.0)
IPv6	$::$	Reserved for future use.
IPv4Gw	0.0 .0 .0	v4 IP of the default gateway
IPv6Gw	$::$	Reserved for future use.
Netbitsv6	64	Reserved for future use.

2.2.3 WLAN Interface

Some of the values can be configured via the web interface on the page Network > WLAN.

Field Name	Default	Description
SSID	MyWLAN	Name of the WLAN network
Encryption	0	deprecated EncryptionType
	Type of encryption: $0=$ none $1=$ WEP $2=$ WPA-PSK TKIP $3=$ WPA-PSK CCMP $4=$ WPA2-PSK TKIP $5=$ WPA2-PSK TKIP / CCMP = WPA2-PSK CCMP	
KeyType	1	Type of key (1 = string / 2 = hex) Key
Mode	0	0 = Infrastructured, 1 = Ad-Hoc, 2 = Micro Access Point (if supported)
UseDHCP	0	If not equal 0, the external DHCP server is used for IP configuration.
IPv4	192.168 .1 .10	v4 IP address (like 192.168.1.100)

Field Name	Default	Description
Subnetmask	255.255 .255 .0	Subnet mask (like 255.255.255.0)
IPv6	$::$	Reserved for future use.
IPv4Gw	0.0 .0 .0	v4 IP of the default gateway
IPv6Gw	$::$	Reserved for future use.
Netbitsv6	64	Reserved for future use.

2.2.4 CAN Interfaces

Each CAN interface is listed as a block with the channel number (e.g. [can_0]). The number in the INI file is one less than the channel number on the website. can_0 thus corresponds to the CAN channel 1 from the configuration website.

Some of the values can be configured via the web interface on the page Network > CAN.

Field Name	Default	Description
IfName	canN	User-defined description of the CAN channel
Active	1	Activates / deactivates the interface.
Baudrate	500000	Transfer rate of the interface in bit/s
Listenonly	1	Listen only mode on / off
Autoresume	0	Auto resume after Bus Off on / off
ManBr	0	Manual transfer rate calculation on / off
BR_Register	-	Register set for manual transfer rate configuration. If activated: e.g. "BRP \%d; RJW \%d; TQ \%d; PSEG1 \%d; PSEG2 \%d; PROPSEG \%d; SP \%0.1f\%\%"
Loopback	0	Loopback mode on / off
Oneshot	0	Single shot mode on / off
Triplesampling	0	Triple sampling on / off
Samplepoint	800	Sample point (800 equivalent 80\%)

```
PCAN-Gateways - Developer Documentation
```


2.2.5 GUI

The values define which information is shown to visitors without logging into the configuration website.

The values can be configured via the web interface on the page Device > User Management.

Field Name	Default	Description
show_device_info	1	Displays the device information on the Login page.
show_can_info	0	Displays the CAN information on the Login page.
show_lan_info	0	Displays the LAN information on the Login page.
show_wlan_info	0	Displays the WLAN information on the Login page.
show_bt_info	0	Displays the BT information on the Login page (not used).
show_routing_info	0	Displays the routing information on the Login page.
show_contact_info	1	Displays the contact information on the Login page.
show_support_info	1	Displays the support information on the Login page.
show_filter_info	1	Displays the filter information on the Login page.

2.2.6 Routes

After FWD_GEN general information for routes is listed.
Each route is listed as a block with its index (e.g. [rt_0]). The number in the INI file is one less than the index on the website. Therefore, rt_0 corresponds to the route 1 from the configuration website.

Routes can be created, edited, and deleted via the web interface on the page Routing > Manage Routes.

Field Name	Default	Description
FWD_GEN		
Count	0	Number of routes
CANoIPdPort	45321	Port of the handshake channel (do not change!)
ROUTEN		
RtInfo	Route n	Description of the route

```
PCAN-Gateways - Developer Documentation
```

Active	0	Route active on / off
Type	can2lan	Direction of the route (CAN2LAN or LAN2CAN)
Interface1	can0	CAN channel
Protocol2	UDP	$0=$ TCP, 1 = UDP
Destination2	$0.0 .0 .0: 5000$	IP address (IPv4) and port of the IP participant, regardless of whether it is the source or destination. Use a port between 1024 and 65535. The ports 45321 and 52957 are reserved for system functions.
FPP	15	max. CAN frames per IP packet
TCPDelay	1	TCP delay active
Displdx	0	Reserved for future use.
SndUdelay	250	Time before re-sending in $\mu \mathrm{s}$. Maximum: 1000, Minimum: 10
SndMax	15	Number of retries Maximum: 64, Minimum: 6
NoCtrl	0	Handshake on / off
Filters	-	List of filters separated by ,
UnifyFilters	1	Calculating a single filter from all filter entries on / off

2.2.7 Filter

Each filter is listed as a block with its index (e.g. [filter_0]). The number in the INI file is one less than the index on the website. filter_0 thus corresponds to the filter 1 from the configuration website.

Filters can be created, edited, and deleted via the web interface on the page Filters > Manage Filters (only available from software package 2.5).

Field Name	Default	Description
FILTER_GEN		
Count	0	Number of filters that have been defined.
FILTER		

Kind	-	Kind of the filter: $0=$ not set $1=$ Range, 11 Bit $2=$ Range, 29 Bit $3=$ Mask, 11 Bit $4=$ Mask, 29 Bit
Type	1	
Term	-	The value indicates how the filter is interpreted. $0=$ Blacklist; $1=$ Whitelist
		For Range filters: The range filter is defined by an upper and lower CAN ID. The indication is hexadecimal and is separated by a hyphen. Example: 0x060-0x120
	For Mask filters: For this filter, the Acceptance Code and then the Acceptance Mask are defined. These are speci- fied hexadecimal and separated by a slash. Example: 0x060/0x020	
Comment	-	User-defined description of the filter
Name	-	User-defined name of the filter

2.3 Structure of the INI File (v1.3.0)

The INI file is divided into different sections: general information, interfaces, routes, and filter.

From software version 2.5.0 PCAN-Gateways create INI files with version 1.3.0.

Please note when editing:

\llcorner Field names do not distinguish between uppercase and lowercase letters.
\llcorner Values must not contain line breaks.
\llcorner The default values listed are used when no value has been defined.

2.3.1 Genera1

Some of the values of General and Host can be configured via the web interface on the page Device > Configuration.

Field Name	Default	Description
GENERAL		
username	-	Not used.
description	-	User-defined description of the device
lighttpdport	80	Not used.
kl15pwdn	0	Power Down on / off (function only for PCAN- Wireless Gateway; for details see manual)
HOST		
devicename		-

2.3.2 LAN Interface

Some of the values can be configured via the web interface on the page Network > LAN.

Field Name	Default	Description
UseDHCP	0	If not equal 0, the external DHCP server is used for IP configuration
IPv4	192.168 .1 .10	v4 IP address (e.g. 192.168.1.100)
Subnetmask	255.255 .255 .0	Subnet mask (e.g. 255.255.255.0)
IPv6	$::$	Reserved for future use.
IPv4Gw	0.0 .0 .0	v4 IP of the default gateway
IPv6Gw	$::$	Reserved for future use.
Netbitsv6	64	Reserved for future use.

2.3.3 WLAN Interface

Some of the values can be configured via the web interface on the page Network > WLAN.

Field Name	Default	Description
SSID	MyWLAN	Name of the WLAN network
Encryption	0	deprecated
EncryptionType	5	Type of encryption: $0=$ none $1=$ WEP 2 = WPA-PSK TKIP 3 WPA-PSK CCMP = WPA2-PSK TKIP = WPA2-PSK TKIP / CCMP = WPA2-PSK CCMP
KeyType	1	Type of key (1 = string / 2 = hex)
Key	-	Key to use
Mode	0	$0=$ Infrastructured, 1 = Ad-Hoc, 2 = Micro Access Point
UseDHCP	0	If not equal 0, the external DHCP server is used for IP configuration
IPv4	192.168 .1 .10	v4 IP address (like 192.168.1.100)

Field Name	Default	Description
Subnetmask	255.255 .255 .0	Subnet mask (like 255.255.255.0)
IPv6	$::$	Reserved for future use.
IPv4Gw	0.0 .0 .0	v4 IP of the default gateway
IPv6Gw	$::$	Reserved for future use.
Netbitsv6	64	Reserved for future use.

2.3.4 CAN Interfaces

Each CAN interface is listed as a block with the channel number (e.g. [can_0]). The number in the INI file is one less than the channel number on the website. can_0 thus corresponds to the CAN channel 1 from the configuration website.

Some of the values can be configured via the web interface on the page Network > CAN.

Field Name	Default	Description
IfName	canN	User-defined description of the CAN channel
Active	1	Activate / deactivate the interface
Baudrate	500000	Transfer rate of the interface in bit/s
Listenonly	1	Listen only mode on / off
Autoresume	0	Auto resume after Bus Off on / off
ManBr	0	Manual transfer rate calculation on / off
BR_Register	-	Register set for manual transfer rate configuration. If activated: e.g. "BRP \%d; RJW \%d; TQ \%d; PSEG1 \%d; PSEG2 \%d; PROPSEG \%d; SP \%0.1f\%\%"
Loopback	0	Loopback mode on / off
Oneshot	0	Single shot mode on / off
Triplesampling	0	Triple sampling on / off
Samplepoint	800	Sample point (800 equivalent 80\%)

2.3.5 GUI

The values define which information is shown to visitors without logging in on the configuration website.

The values can be configured via the web interface on the page Device > User Management.

Field Name	Default	Description
show_device_info	1	Displays the device information on the Login page.
show_can_info	0	Displays the CAN information on the Login page.
show_lan_info	0	Displays the LAN information on the Login page.
show_wlan_info	0	Displays the WLAN information on the Login page.
show_bt_info	0	Displays the BT information on the Login page (not used).
show_routing_info	0	Displays the routing information on the Login page.
show_contact_info	1	Displays the contact information on the Login page.
show_support_info	1	Displays the support information on the Login page.
show_filter_info	1	Displays the filter information on the Login page.

2.3.6 Routes

After FWD_GEN general information for routes are listed.
Each route is listed as a block with its index (e.g. [rt_0]). The number in the INI file is one less than the index on the website. rt_0 therefore corresponds to the route 1 from the configuration website.

Routes can be created, edited, and deleted via the web interface on the page Routing > Manage Routes.

Field Name	Default	Description
FWD_GEN		
Count	0	Number of routes

```
PCAN-Gateways - Developer Documentation
```

CANoIPdPort	45321	Port of the handshake channel (do not change!)
ROUTEN		
RtInfo	Route n	Description of the route
Active	0	Route active on / off
Type	can2lan	Direction of the route (CAN2LAN or LAN2CAN)
Interface1	can0	CAN channel
Protocol2	UDP	0 = TCP, 1 = UDP
Destination2	0.0.0.0:5000	IP address (IPv4) and port of the IP participant, regardless of whether it is the source or destination. Use a port between 1024 and 65535. The ports 45321 and 52957 are reserved for system functions.
FPP	15	max. CAN frames per IP packet
TCPDelay	1	TCP delay active
Displdx	0	reserved for future use
SndUdelay	250	Time before re-sending in $\mu \mathrm{s}$ Maximum: 1000, Minimum: 10
SndMax	15	Number of retries Maximum: 64, Minimum: 6
NoCtrl	0	Handshake on / off
Filters	-	List of filters separated by ,
UnifyFilters	-	Calculating a single filter from all filter entries on / off
JoinFilters	0	Defines the logical operation for joining multiple filters. $0=0 R ; 1=$ AND

2.3.7 Filter

Each filter is listed as a block with its index (e.g. [filter_0]). The number in the INI file is one less than the index on the website. filter_0 thus corresponds to the filter 1 from the configuration website.

Filters can be created, edited, and deleted via the web interface on the page Filters > Manage Filters.

Field Name	Default	Description
filter_type	-	Kind of the filter: $0=$ not set $1=$ Range, 11 Bit $2=$ Range, 29 Bit $3=$ Mask, 11 Bit $4=$ Mask, 29 Bit
filter_mode	1	-
Term		The value indicates how the filter is interpreted. $0=$ Blacklist; 1 = Whitelist
	For Range filters: The range filter is defined by an upper and lower CAN ID. The indication is hexadecimal and is separated by a hyphen. Example: 0x060-0x120	
For Mask filters:		

2.4 Structure of the INI File (v1.4.1)

The INI file is divided into different sections: general information, interfaces, routes, and filter.

From software version 2.7.0, PCAN-Gateways create INI files with version 1.4.0. Revision 1.4.1 which was introduced with software version 2.8.1 added the CAN parameter "enable_error_counter".

Please note when editing:

\llcorner Field names do not distinguish between uppercase and lowercase letters.
\llcorner Values must not contain line breaks.
\llcorner The default values listed are used when no value has been defined.

2.4.1 Genera1

Some of the values of General and Host can be configured via the web interface on the page Device > Configuration.

Field Name		Default		
GENERAL		Description		
username	-	Not used.		
description	-	User-defined description of the device		
lighttpdport	80	Not used.		
kI15pwdn	0	Power Down on / off (function only for PCAN- Wireless Gateway; for details see manual)		
HOST	-			
devicename				
JSON	1	User-defined name of the device		
enable_json	1	If active, the JSON interface can be used.		
enable_json_shell	0	If active, the Shell view can be used.		

enable_json_config	0	If active, the device can be configured via the JSON interface.
respect_gui_pub	1	If active, the JSON interface respects Public Dashboard settings.

2.4.2 LAN Interface

Some of the values can be configured via the web interface on the page Network > LAN.

Field Name	Default	Description
Ifname	ethN	Interface designation. Do not change!
UseDHCP	0	If not equal 0, the external DHCP server is used for IP configuration.
IPv4	192.168 .1 .10	v4 IP address (e.g. 192.168.1.100)
Subnetmask	255.255 .255 .0	Subnet mask (e.g. 255.255.255.0)
IPv6	$::$	Reserved for future use.
IPv4Gw	0.0 .0 .0	v4 IP of the default gateway
IPv6Gw	$::$	Reserved for future use.
Netbitsv6	64	Reserved for future use.

2.4.3 WLAN Interface

Some of the values can be configured via the web interface on the page Network > WLAN.

Field Name	Default	Description
Ifname	wlanN	Interface designation. Do not change!
SSID	PEAK Wireless Default	Name of the WLAN network. Please note: The character \# is not allowed.
Encryption	0	Deprecated. Not in use.

Field Name	Default	Description				
EncryptionType	5	Type of encryption: $0=$ none $1=$ WEP $2=$ WPA-PSK TKIP $3=$ WPA-PSK CCMP $4=$ WPA2-PSK TKIP $5=$ WPA2-PSK TKIP / CCMP $6=$ WPA2-PSK CCMP				
		Type of key (1 = string / 2 = hex)				
KeyType	1	Key to use		Key	-	$0=$ Infrastructured $1=$ Ad-Hoc $2=$ Micro Access Point
:---	:---	:---				
Mode	0	If not equal 0, the external DHCP server is used for IP configuration.				
UseDHCP	0	v4 IP address (like 192.168.1.100)				
IPv4	192.168 .1 .10	Subnet mask (like 255.255.255.0)				
Subnetmask	255.255 .255 .0	Reserved for future use.				
IPv6	$:$	v4 IP of the default gateway				
IPv4Gw	0.0 .0 .0	Reserved for future use.				
IPv6Gw	$::$	Reserved for future use.				

2.4.4 CAN Interfaces

Each CAN interface is listed as a block with the channel number (e.g. [can_0]). The number in the INI file is one less than the channel number on the website. can_0 thus corresponds to the CAN channel 1 from the configuration website.

Some of the values can be configured via the web interface on the page Network > CAN.

Field Name	Default	Description
Ifname	canN	User-defined description of the CAN channel. Do not change!
Active	1	Activate / deactivate the interface

Baudrate	500000	Transfer rate of the interface in bit/s
Listenonly	1	Listen only mode on / off
Autoresume	0	Auto resume after Bus Off on / off
ManBr	0	Manual transfer rate calculation on / off
BR_Register	-	Register set for manual transfer rate configuration. If activated: e.g. "BRP \%d; RJW \%d; TQ \%d; PSEG1 \%d; PSEG2 \%d; PROPSEG \%d; SP \%0.1f\%\%"
Loopback	0	Loopback mode on / off
Oneshot	0	Single shot mode on / off
Triplesampling	0	Triple sampling on / off
Samplepoint	800	Sample point (800 equivalent 80\%)
Enable_error_counter	0	Enables / disables error reporting for the CAN channel. With this, the values can_errors_rx and can_errors_tx are counted.

2.4.5 GUI

The values define which information is shown to visitors without logging in on the configuration website. The values can be configured via the web interface on the page Device $>$ User Management.

Field Name	Default	Description
show_device_info	1	Displays the device information on the Login page.
show_can_info	0	Displays the CAN information on the Login page.
show_lan_info	0	Displays the LAN information on the Login page.
show_wlan_info	0	Displays the WLAN information on the Login page.
show_bt_info	0	Displays the BT information on the Login page (not used).
show_routing_info	0	Displays the routing information on the Login page.
show_contact_info	1	Displays the contact information on the Login page.
show_support_info	1	Displays the support information on the Login page.
show_filter_info	1	Displays the filter information on the Login page.

2.4.6 Routes

After FWD_GEN general information for routes is listed.
Each route is listed as a block with its index (e.g. [rt_0]). The number in the INI file is one less than the index on the website. rt_0 therefore corresponds to the route 1 from the configuration website.

Routes can be created, edited, and deleted via the web interface on the page Routing > Manage Routes.

Field Name	Default	Description
FWD_GEN		
Count	0	Number of routes
CANoIPdPort	45321	Port of the handshake channel. Do not change!
ROUTEN		
RtInfo	Route n	Description of the route
Active	0	Route active on / off
Type	can2lan	Direction of the route (CAN2LAN or LAN2CAN)
Interface1	can0	CAN channel
Protocol2	UDP	0 = TCP, 1 = UDP
Destination2	0.0.0.0:5000	IP address (IPv4) and port of the IP participant, regardless of whether it is the source or destination. Use a port between 1024 and 65535. The ports 45321 and 52957 are reserved for system functions.
FPP	15	max. CAN frames per IP packet
TCPDelay	1	TCP delay active
Displdx	0	reserved for future use
SndUdelay	250	Time before re-sending in $\mu \mathrm{s}$ Maximum: 1000, Minimum: 10
SndMax	15	Number of retries Maximum: 64, Minimum: 6
cdm	500	Delay in ms between attempts to establish a connection. Maximum: 1000

invscktmode	0	"inverse socket mode" or "connection inverted" inverts the connection establishment. Instead of the send route, the receive route establishes the connection.
NoCtrl	0	Handshake on / off
Filters	-	List of filters separated by,
UnifyFilters	-	Calculating a single filter from all filter entries on / off
JoinFilters	0	Defines the logical operation for joining multiple filters. $0=$ OR; $1=$ AND

2.4.7 Filter

Each filter is listed as a block with its index (e.g. [filter_0]). The number in the INI file is one less than the index on the website. filter_0 thus corresponds to the filter 1 from the configuration website.

Filters can be created, edited, and deleted via the web interface on the page Filters > Manage Filters.

Field Name	Default	Description
filter_type	-	Kind of the filter: $0=$ not set $1=$ Range, 11 Bit $2=$ Range, 29 Bit $3=$ Mask, 11 Bit $4=$ Mask, 29 Bit
filter_mode		
		The value indicates how the filter is interpreted. $0=$ Blacklist; $1=$ Whitelist
Term	For Range filters: The range filter is defined by an upper and lower CAN ID. The indication is hexadecimal and is separated by a hyphen. Example: 0x060-0x120	
		For Mask filters: For this filter, the Acceptance Code and then the Acceptance Mask are defined. These are speci- fied hexadecimal and separated by a slash. Example: $0 \times 060 / 0 \times 020$

Comment	-	User-defined description of the filter
Name	-	User-defined name of the filter

2.5 Structure of the INI File (v1.5.0)

The INI file is divided into different sections: general information, interfaces, routes, and filter.

From software version 2.9.0 PCAN-Gateways create INI files with version 1.5.0.

Please note when editing:

\llcorner Field names do not distinguish between uppercase and lowercase letters.
\llcorner Values must not contain line breaks.
\llcorner The default values listed are used when no value has been defined.

2.5.1 Genera1

Some of the values of General and Host can be configured via the web interface on the page Device > Configuration.

Field Name		Default
GENERAL		Description
username	-	Not in use.
description	-	User-defined description of the device
lighttpdport	80	Not in use.
kI15pwdn	0	Power Down on / off (function only for PCAN- Wireless Gateway; for details see manual)
HOST	-	
devicename		1
JSON		
enable_json	1	If active, the JSON interface can be used.
enable_json_shell	0	If active, the Shell view can be used.
enable_json_config	0	If active, the device can be configured via the JSON interface.

System

respect_gui_pub	1	$\begin{array}{l}\text { If active, the JSON interface respects Public } \\ \text { Dashboard settings. }\end{array}$

2.5.2 LAN Interface

Some of the values can be configured via the web interface on the page Network > LAN.

Field Name	Default	Description
Ifname	ethN	Interface designation. Do not change!
UseDHCP	0	If not equal 0, the external DHCP server is used for IP configuration.
IPv4	192.168 .1 .10	v4 IP address (e.g. 192.168.1.100)
SubnetMask	255.255 .255 .0	Subnet mask (e.g. 255.255.255.0)
IPv6	$::$	Reserved for future use.
IPv4Gw	0.0 .0 .0	v4 IP of the default gateway
IPv6Gw	$::$	Reserved for future use.
Netbitsv6	64	Reserved for future use.

2.5.3 WLAN Interface

Some of the values can be configured via the web interface on the page Network > WLAN.

Field Name	Default	Description
Ifname	wlanN	Interface designation. Do not change!
SSID	PEAK Wireless Default	Name of the WLAN network. Please note: The character \# is not allowed.
Encryption	0	Deprecated. Not in use.
EncryptionType	5	Type of encryption: $\begin{aligned} & 0=\text { none } \\ & 1=\text { WEP } \\ & 2=\text { WPA-PSK TKIP } \\ & 3=\text { WPA-PSK CCMP } \\ & 4=\text { WPA2-PSK TKIP } \\ & 5=\text { WPA2-PSK TKIP } / \text { CCMP } \\ & 6=\text { WPA2-PSK CCMP } \end{aligned}$

```
PCAN-Gateways - Developer Documentation
```

Field Name	Default	Description
KeyType	1	Type of key (1 = string / 2 = hex)
Key	-	Key to use
Mode	0	0 = Infrastructured 1 = Ad-Hoc 2 $=$ Micro Access Point
UseDHCP	0	If not equal 0, the external DHCP server is used for IP configuration.
IPv4	192.168 .1 .10	v4 IP address (like 192.168.1.100)
SubnetMask	255.255 .255 .0	Subnet mask (like 255.255.255.0)
IPv6	$::$	Reserved for future use.
IPv4Gw	0.0 .0 .0	v4 IP of the default gateway
IPv6Gw	$::$	Reserved for future use.

2.5.4 CAN Interfaces

Each CAN interface is listed as a block with the channel number (e.g. [can_0]). The number in the INI file is one less than the channel number on the website. can_0 thus corresponds to the CAN channel 1 from the configuration website.

Some of the values can be configured via the web interface on the page Network > CAN.

Field Name	Default	Description
Ifname	canN	User-defined description of the CAN channel. Do not change!
Active	1	Activate / deactivate the interface
Baudrate	500000	Bit rate of the interface in bit/s
Listenonly	1	Listen only mode on / off
Autoresume	0	Auto resume after Bus Off on / off
Loopback	0	Loopback mode on / off
Oneshot	0	Single shot mode on / off

Triplesampling	0	Triple sampling on / off
ManBr	0	Manual bit rate configuration on / off
BR_Register	-	Register set for manual bit rate configuration. If activated: e.g. "BRP \%d; RJW \%d; TO \%d; PSEG1 \%d; PSEG2 \%d; PROPSEG \%d
Samplepoint	800	Sample point (800 equivalent 80\%)
Enable_error_counter	0	Enables / disables error reporting for the CAN channel. With this, the values can_errors_rx and can_errors_tx are counted.

2.5.5 GUI

The values define which information is shown to visitors without logging in on the configuration website.

The values can be configured via the web interface on the page Device > User Management.

Field Name	Default	Description
show_device_info	1	Displays the device information on the Login page.
show_can_info	0	Displays the CAN information on the Login page.
show_lan_info	0	Displays the LAN information on the Login page.
show_wlan_info	0	Displays the WLAN information on the Login page.
show_bt_info	0	Displays the BT information on the Login page (not used).
show_routing_info	0	Displays the routing information on the Login page.
show_contact_info	1	Displays the contact information on the Login page.
show_support_info	1	Displays the support information on the Login page.
show_filter_info	1	Displays the filter information on the Login page.

2.5.6 Routes

After FWD_GEN general information for routes is listed.
Each route is listed as a block with its index (e.g. [rt_0]). The number in the INI file is one less than the index on the website. rt_0 therefore corresponds to the route 1 from the configuration website.

Routes can be created, edited, and deleted via the web interface on the page Routing > Manage Routes.

Field Name		Default
FWD_GEN	Description	
Count	0	Number of defined routes
CANoIPdPort	45321	Port of the handshake channel. Do not change!
ROUTEN		
RtInfo	Route n	User-defined description of the route
Active	0	Route activated / deactivated
Type	can2lan	Direction of the route: can2lan = Send route lan2can = Receive route
Interface1	can0	Used CAN channel: can0 $=$ CAN channel 1 can1 $=$ CAN channel 2
Protocol2	UDP	Used IP protocol: $0=$ TCP $1=$ UDP
Destination2	$0.0 .0 .0: 5000$	IP address (IPv4) and port of the IP participant, regardless of whether it is the source or destination.
FPP	15	Use a port between 1024 and 65535. The ports 45321 and 52957 are reserved for system functions.
TCPDelay	1	Max. CAN frames per IP packet
DispIdx	0	TCP delay active on / off

```
PCAN-Gateways - Developer Documentation
```

SndMax	30	Number of retries Maximum: 64, Minimum: 6
cdm	500	Delay in ms between attempts to establish a connection. Maximum: 1000
invscktmode	0	"inverse socket mode" or "connection inverted" inverts the connection establishment. Instead of the send route, the receive route establishes the connection.
NoCtrl	0	Disable handshake on / off. $0=$ Handshake is used 1=Handshake is disabled
Filters	-	List of filters separated by,
UnifyFilters	0	Calculating a single filter from all filter entries on / off
JoinFilters	0	Defines the logical operation for joining multiple filters. 0 = OR; $1=$ AND
no_keep_alive	0	Deactivate transmitting TCP keep alive frames
use_crc_frm	0	Transmit CAN frames with CRC checksum on / off
crc_start_value	0×00000000	The CRC start value for creating the CRC32 checksum.
crc_polynom	$0 x 04 C 11$ DB7	The CRC polynomial for creating the CRC32 checksum.

2.5.7 Filter

Each filter is listed as a block with its index (e.g. [filter_0]). The number in the INI file is one less than the index on the website. filter_0 thus corresponds to the filter 1 from the configuration website.

Filters can be created, edited, and deleted via the web interface on the page Filters > Manage Filters.

Field Name	Default	Description
filter_type	-	Kind of the filter: $0=$ not set $1=$ Range, 11 Bit $2=$ Range, 29 Bit $3=$ Mask, 11 Bit $4=$ Mask, 29 Bit
filter_mode		
Term	-	The value indicates how the filter is interpreted. $0=$ Blacklist $1=$ Whitelist
	For Range filters: The range filter is defined by an upper and lower CAN ID. The indication is hexadecimal and is separated by a hyphen. Example: 0x060-0x120	
For Mask filters:		

2.6 Structure of the INI File (v2.0.1)

The INI file is divided into different sections: general information, interfaces, routes, and filter.

The INI format 2.0 was introduced with the release of the PCANEthernet Gateway FD DR and its software version 1.0.0. There have been major changes compared to the format version 1.5.0:
\llcorner The format version has been moved from the header comment to the general section.
\llcorner The field names have been revised.
\llcorner Unused fields have been removed.
\llcorner The CAN section has been extended regarding CAN FD support.
ᄂ The CAN field ManBr was replaced by br_def. With br_def a further way to define a custom bit rate was established.
\llcorner For the PCAN-Ethernet Gateway FD DR two sections were added: NTP_CLIENT and LEDs.
\llcorner The maximum number of routes can be specified with the parameter count_max in the range of 0 to 64 .

With the update 2.0.1 further parameters were added:
\llcorner CAN interface settings for IRQ limits irq_time_limit and irq_count_limit. This can be used to balance message latency, throughput and CPU load.

ᄂ WLAN settings startup_delay and monitoring_delay.

Please note when editing:

\llcorner Field names do not distinguish between uppercase and lowercase letters.
\llcorner Values must not contain line breaks.
\llcorner The default values listed are used when no value has been defined.

2.6.1 Genera1

Some of the values of General and Host can be configured via the web interface on the page Device > Configuration.

Field Name	Default	Description
GENERAL		
ini_version	2.0.1	Format version of the INI file. Do not change!
description	-	User-defined description of the device
kl15_pwdn	0	Power Down on / off (function only for PCAN-Wireless Gateway; for details see manual)
device_id	4294967295	The Device ID is used to differ multiple devices in the PCAN driver and software environment for Windows.
HOST		
devicename	-	User-defined name of the device
JSON		
enable_json	1	If active, the JSON interface can be used.
enable_json_shell	0	If active, the Shell view can be used.
enable_json_config	0	If active, the device can be configured via the JSON interface.
respect_gui_pub	1	If active, the JSON interface respects Public Dashboard settings.
NTP_CLIENT		
active		Enable / disable the use of the NTPD (Network Time Protocol daemon) service.
server_1	0.de.pool.ntp.org	URL of the first NTP server to be used
server_2	-	URL of the second NTP server to be used

2.6.2 LAN Interface

Some of the values can be configured via the web interface on the page Network > LAN.

Field Name	Default	Description
if_name	ethN	Interface designation. Do not change!
use_dhcp	0	If not equal 0, the external DHCP server is used for IP configuration.
ip_v4	192.168 .1 .10	v4 IP address (e.g. 192.168.1.100)
subnet_mask	255.255 .255 .0	Subnet mask (e.g. 255.255.255.0)
ip_v6	$::$	Reserved for future use.
ip_v4_gw	0.0 .0 .0	v4 IP of the default gateway
ip_v6_gw	$::$	Reserved for future use.
netbits_v6	64	Reserved for future use.

2.6.3 WLAN Interface

Some of the values can be configured via the web interface on the page Network > WLAN.

Field Name	Default	Description
if_name	wlanN	Interface designation. Do not change!
ssid	PEAK Wireless Default	Name of the WLAN network. Please note: The character \# is not allowed.
encryption_type	5	Type of encryption: $0=$ none $1=$ WEP $2=$ WPA-PSK TKIP $3=$ WPA-PSK CCMP 4 = WPA2-PSK TKIP $5=$ WPA2-PSK TKIP / CCMP
		= WPA2-PSK CCMP
key_type	1	Type of key: $1=$ string $2=$ hex
key		Key to use

```
PCAN-Gateways - Developer Documentation
```

Field Name	Default	Description
mode	0	0 = Infrastructured = Ad-Hoc 2 = Micro Access Point
use_dhcp	0	If not equal 0, the external DHCP server is used for IP configuration.
ip_v4	192.168 .1 .10	v4 IP address (e.g. 192.168.1.100)
subnet_mask	255.255 .255. 0	Subnet mask (e.g. 255.255.255.0)
ip_v6	$::$	Reserved for future use.
ip_v4_gw	0.0 .0 .0	v4 IP of the default gateway
ip_v6_gw	64	Reserved for future use.

2.6.4 CAN Interfaces

Each CAN interface is listed as a block with the channel number (e.g. [can_0]). The number in the INI file is one less than the channel number on the website. can_0 thus corresponds to the CAN channel 1 from the configuration website.

Some of the values can be configured via the web interface on the page Network > CAN.

Field Name	Default	Description
if_name	canN	User-defined description of the CAN channel. Do not change!
active	1	Activate / deactivate the interface

listen_only	1	Listen only mode on / off
auto_resume	1	Auto resume after Bus Off on / off
loop_back	0	Loopback mode on / off
one_shot	0	Single shot mode on / off
triple_sampling	0	Triple sampling on / off
fd	1	CAN FD on / off
br_def	0	Specifies how the bit rate is defined: $0=$ Bit rates and sample points are determined by the fields bit_rate, data_bit_rate, sample_point, and data_sample_point. 1 = Bit rates and sample points are determined by the fields br_register and data_br_register. 2 = Clock frequency, bit rates, and sample points are determined with the br_string field.
core_clock	80000000	Clock frequency in Hz
bit_rate	500000	Nominal bit rate of the interface in bit/s
sample_point	0	Sample point of the nominal bit rate (800 equivalent 80\%)
data_bit_rate	Value from bit_rate	Data bit rate of the interface in bit/s
data_sample_point	0	Sample point of the data bit rate (800 equivalent 80%)
br_register	-	Register set for manual configuration of the nominal bit rate. Example: BRP \%d, RJW \%d, TQ \%d, PSEG1 \%d, PSEG2 \%d, PROPSEG \%d
data_br_register	-	Register set for manual configuration of the data bit rate. Example: BRP \%d, RJW \%d, TQ \%d, PSEG1 \%d, PSEG2 \%d, PROPSEG \%d
br_string	Product specific	Register string for manual configuration of the clock frequency, nominal bit rate, and data bit rate. Example: f_clock=\%d,nom_brp=\%d,nom_tseg1=\%d, nom_tseg2=\%d,nom_sjw=\%d,data_brp=\%d, data_tseg1=\%d,data_tseg2=\%d,data_sjw=\%d

enable_error_counter	0	Enables / disables error reporting for the CAN channel. With this, the values can_errors_rx and can_errors_tx are counted.
measure_bus_load	0	Enables / disables bus load measurement
irq_time_limit	10	Specifies the time that the CAN interface waits until an interrupt is triggered. The time is set in a range from 1 to 15 milliseconds.
irq_count_limit	8	Specifies the number of messages that have to be received by the CAN interface before an interrupt is triggered. The number is set in a range from 1 to 127.

2.6.5 GUI

The values define which information is shown to visitors without logging in on the configuration website.

The values can be configured via the web interface on the page Device > User Management.

Field Name	Default	Description
show_device_info	1	Displays the device information on the Login page.
show_can_info	0	Displays the CAN information on the Login page.
show_lan_info	0	Displays the LAN information on the Login page.
show_wlan_info	0	Displays the WLAN information on the Login page.
show_bt_info	0	Displays the BT information on the Login page (not used).
show_routing_info	0	Displays the routing information on the Login page.
show_contact_info	1	Displays the contact information on the Login page.
show_support_info	1	Displays the support information on the Login page.
show_filter_info	1	Displays the filter information on the Login page.

2.6.6 Routes

After FWD_GEN general information for routes is listed.
Each route is listed as a block with its index (e.g. [rt_0]). The number in the INI file is one less than the index on the website. rt_0 therefore corresponds to the route 1 from the configuration website.

Routes can be created, edited, and deleted via the web interface on the page Routing > Manage Routes.

Field Name		Default
FWD_GEN	Description	
count_max	16	Maximum number of definable routes. Value range 0 ... 64
count	-	Number of defined routes
ROUTEN	Route n	User-defined description of the route
rt_info	0	Route activated / deactivated
active	can2lan	Direction of the route: can2lan = Send route lan2can = Receive route
type	UDP	Used CAN channel: can0 = CAN channel 1 can1 = CAN channel 2
interface_1	$0.0 .0 .0: 5000$	Used IP protocol: $0=$ TCP $1=$ UDP
protocol_2	IP address (IPv4) and port of the IP participant, regardless of whether it is the source or destination. Use a port between 1024 and 65535. The ports 45321 and 52957 are reserved for system functions.	
destination_2	15	Max. CAN frames per IP packet
fpp	1	TCP delay active on / off
tcp_delay	0	Reserved for future use.
disp_idx		

```
PCAN-Gateways - Developer Documentation
```

snd_delay_us	300	Time before re-sending in $\mu \mathrm{s}$ Maximum: 1000, Minimum: 10
snd_max	30	Number of retries Maximum: 64, Minimum: 6
connect_delay_ms	500	Delay in ms between attempts to establish a connection. Maximum: 1000
invert_socket_mode	0	"inverse socket mode" or "connection inverted" inverts the connection establishment. Instead of the send route, the receive route establishes the connection.
no_ctrl	0	Disable handshake on / off. 0 = Handshake is used $1=$ Handshake is disabled
filters	-	List of filters separated by , unify_filters 0
join_filters	0	Calculating a single filter from all filter entries on / off
no_keep_alive	0	Defines the logical operation for joining multiple filters. $0=$ OR; $1=$ AND
use_crc_frm	0	Deactivate transmitting TCP keep alive frames
crc_start_value	$0 x 00000000$	Transmit CAN frames with CRC checksum on / off
crc_polynom	$0 x 04 C 11 D B 7$	The CRC start value for creating the CRC32 checksum.
The CRC polynomial for creating the CRC32 checksum.		

2.6.7 Filter

Each filter is listed as a block with its index (e.g. [filter_0]). The number in the INI file is one less than the index on the website. filter_0 thus corresponds to the filter 1 from the configuration website.

Filters can be created, edited, and deleted via the web interface on the page Filters > Manage Filters.

```
PCAN-Gateways - Developer Documentation
```

Field Name	Default	Description
filter_type	-	Kind of the filter: $0=$ not set $1=$ Range, 11 Bit $2=$ Range, 29 Bit $3=$ Mask, 11 Bit $4=$ Mask, 29 Bit
filter_mode		
term	-	The value indicates how the filter is interpreted. $0=$ Blacklist $1=$ Whitelist
		For Range filters: The range filter is defined by an upper and lower CAN ID. The indication is hexadecimal and is separated by a hyphen. Example: 0x060-0x120
		For Mask filters: For this filter, the Acceptance Code and then the
Acceptance Mask are defined. These are speci-		
fied hexadecimal and separated by a slash.		
Example: $0 \times 060 / 0 \times 020$		

2.6.8 LEDs

The behavior of the LEDs 1 to 3 of the PCAN-Ethernet Gateway FD DR can be configured via the INI file. Under the section [leds] two fields are available for each LED.

Field Name	Default	Description
ledN_tsrigger	none	Defines the trigger for the flashing of the LED: none = LED is off. heartbeat = LED flashes periodically. netdev = LED flashing is connected to a network device (CAN channel). panic = LED is activated in case of kernel panic.
ledN_opts	-	Options are written in one line and separated by spaces. Example: led2_opts = device_name="can0" link rx tx heartbeat options:

inverted	In
netdev options:	

device_name	Specifies the connected network device. can0 = CAN channel 1 can1 = CAN channel 2
link	LED represents the status of the network device.
$r x$	LED flashes when receiving a message.
tx	LED flashes when sending a message.
interval	Defines the duration of the flashing in ms.

3 JSON Interface

The JSON interface is an alternative way to access the status information and configuration of the PCAN-Gateways. A specific request is transmitted as a GET parameter of a URL and the PCANGateway returns a JSON-formatted response. Based on this, it is possible to monitor and configure the PCAN-Gateway product family via software.

The JSON interface is activated at delivery but cannot be used for configuration. The status and rights of the interface are managed via the website.

3.1 Usage

3.1.1 Activation and Configuration

The JSON interface is activated at delivery but cannot be used for configuration.
\square For the configuration of the interface, proceed as follows:

1. Open the configuration website and log in.
2. Go to the page Device > User Management.

Figure 6: PCAN-Gateway web interface:
Activation of the Expert display mode
3. Set Display Mode to Expert and save the setting.
4. Go to the page Device $>$ Configuration.

Figure 7: PCAN-Gateway web interface:
Activation of the JSON Interface
5. Activate the interface with the checkbox Enable JSON Interface in the form JSON Interface Configuration.
6. Configure the other options in the form:

Enable Configuration

If active, the device can be configured via the JSON interface. This includes the commands set, reset, reboot, and delete.

Enable Shell View

If active, the Shell view can be used. It is primarily intended for development and familiarization.

Respect Public Display

If active, access is only allowed to elements that have been activated on the page Device > User Management in the Public Dashboard form.
7. Save your settings with Save Settings.

Note: In the current version there is no access protection for the JSON interface. Once you have activated the interface and Enable Configuration, the PCAN-Gateway can be configured without logging in.

3.1.2 Access to the Interface

You can access the JSON interface via two alternative PHP pages:
json.php serves as a software connection for productive use. The interface returns the response in JSON format. Help text output is disabled for this page.
json_shell.php provides a Shell emulation for development. This view displays information about processing the submitted request and the JSON-formatted response. The help documentation for the interface can also be displayed.

Hints for using the she11:
\llcorner The last command is called with the key [arrow up].
\llcorner Perform a short click with the left mouse button to enter the input field.
\llcorner If you hold down the left mouse button, the cursor is not placed in the input field and you can select text, for example.
\llcorner There are three links in the header:
[Web] Opens the configuration website
[CMD] Opens the json.php page with the last request using the Get parameter cmd
[JCMD] Opens the json.php page with the last request in JSON format using the Get parameter jcmd

3.1.3 Structure and Sending of a Request

When using the JSON interface, pass your request as a Get parameter. This is appended to the URL of the respective PHP page. If you use the Shell view, you can simply enter the command and send it with [Enter]. The page is then called with the corresponding Get parameter.

Two alternative get parameters are accepted. The parameter cmd expects a proprietary request, which is documented later on. The parameter jemd expects a JSON-formatted request.

The request itself consists of up to four components: Command, Element, Sub Element, and Properties. The basic structure is as follows:

```
jcmd: {
    "command": "...",
    "element": "...",
    "sub_element": "...",
    "property": {
            [...]
        }
    }
```

Examples of a request are provided in all three variants ...
... for the JSON formatted request URL JSON:

```
[...]/json.php?jcmd={"command":"...","element":"...","sub_elemen
    t":"...", "property":{"...":"..."}}
```

... for the proprietary request URL:
[...]/json.php?cmd=Command+Element+Subelement+Property
... for the request via the shell emulation Shell Cmd:

Command Element Subelement Property

Command

A request starts with one of the following commands:

\llcorner get	Reading the status information and configuration.
\llcorner set	Configuring the PCAN-Gateway.
\llcorner delete	Deleting a route or filter.
\leftarrow reset	Resetting a CAN channel or a route.
\leftarrow reboot	Restarting the PCAN-Gateway.
\leftarrow help	Displaying the help documentation. Only available for Shell view.

In chapter 0, each command is described in detail.

Element

Commands refer via so-called elements to functionally or thematically differentiated parts of the PCAN Gateway. There are the following elements:

\llcorner device	Covers information about the PCAN-Gateway such as identification features, number of interfaces, and version information.
\checkmark can	Covers information and configuration of the available CAN interfaces.
$\cdots \operatorname{lan}$	Covers information and configuration of the available LAN interfaces.
\llcorner wlan	Covers information and configuration of the available WLAN interfaces.
\llcorner route	Covers information and configuration of routes.
\llcorner filter	Covers information and configuration of filters.

Sub Element

The elements can, lan, wlan, route, and filter can exist several times. A sub element can be used to address a single instance of the element. The sub element is an integer number larger than 0.

Properties

Each element has different information and settings which can be read out and often configured via Properties. In contrast to commands, elements and sub-elements, multiple properties can be addressed with one request.

Chapter 3.3 contains detailed information on the elements and their properties.

3.1.4 Access Permission

In the current version, there is no access protection for the JSON interface. Once you have activated the interface and Enable Configuration, the PCAN-Gateway can be configured without logging in.

On the page Device > Configuration of the configuration website, you can configure two settings in Expert display mode that restrict access to the interface.

Enable Configuration

If active, the device can be configured via the JSON interface. This includes the commands set, reset, reboot, and delete.

Respect Public Display

If active, access is only allowed to elements that have been activated on the page Device > User Management in the Public Dashboard form.

3.1.5 Response and Error Notifications

The JSON interface returns the response to a request in JSON format. The answer contains at least three items of information:

Valid	boolean	Indicates to what extent the request and its processing was valid (true) or invalid (false).
Error	integer	Error code.
error_message	string	Error description.

Example:

```
{"valid":false,"error":200,"error_message":"No command
    received."}
```

As soon as an error occurs during processing of the request, processing is terminated and the error code and its error message are returned. The following errors can be detected in the current version.

GENERAL
100 The PCAN-Gateway JSON Interface is disabled!

COMMAND
200 No command received.
201 Command unknown.
202 Forbidden characters were used for the command.
203 This command is not available due to permission restrictions.
ELEMENT
300 Element unknown.

301
302
303

306 This element cannot be deleted.
307
Forbidden characters were used for the element. Access can be enabled via the website.

This element cannot be reset. This command does not expect an element or property.
The command was called without an element, but this is required. Element unknown but an element is required for this command.
No permission for this element due to the public display settings.

SUB ELEMENT

$400 \quad$ There are no sub elements for the called element.
401 Command was called without a valid sub element, but this is required.

PROPERTY

500 Command was called with an invalid property.
501 Forbidden characters were used for the sub element or at least one property.
502 Command was called without a valid property or value to be assigned.
503 For this command, a property is required.

DEVICE COMMUNICATION

1000 It was not possible to initialize the communication with the device.
1001 It was not possible to finish the communication with the device.

CAN CONFIGURATION

1100 The submitted CAN channel is not valid.
1101 The submitted channel number is higher than the number of CAN interfaces available.
1102 The CAN stats could not be reset.
1103 The submitted CAN state is not valid.
1104 The CAN state could not be set. The configuration request was canceled.
1110 The submitted nominal bit rate is not valid.
1111
1112
1113
1114
1170
1171

1172

1173

1175 The submitted data bit rate is smaller than the nominal bit rate.
1120 The submitted value for the bit rate definition mode is not valid.
1121 The register set of the nominal bit rate is either empty or has wrong values.
1122 The register set of the nominal bit rate could not be set. The configuration request was canceled.
1123 The Bit Rate Prescaler value of the nominal bit rate register set was not valid. Please use a value from 1-1024.

1124 The Phase Segment 1 value of the nominal bit rate register set was not valid. Please use a value from 1-128.
1125 The Phase Segment 2 value of the nominal bit rate register set was not valid. Please use a value from 1-128.
1126 The Propagation Segment value of the nominal bit rate register set was not valid. Please use a value from 1-128.
1127 The Re-Synch. Jump Width value of the nominal bit rate register set was not valid. Please use a value from 1-128.

1182 The register set of the data bit rate could not be set. The configuration request was canceled.
1183 The Bit Rate Prescaler value of the data bit rate register set was not valid. Please use a value from 1-1024.
1184 The Phase Segment 1 value of the data bit rate register set was not valid. Please use a value from 1-16.
1185 The Phase Segment 2 value of the data bit rate register set was not valid. Please use a value from 1-16.
1186 The Propagation Segment value of the data bit rate register set was not valid. Please use a value from 1-16.
1187 The Re-Synch. Jump Width value of the data bit rate register set was not valid. Please use a value from 1-16.
1128
11281
11282
The bit rate register string is not valid.
The bit rate register string is incomplete. The clock is missing.
.
The bit rate register string is incomplete. At least one value of the register set for the nominal bit rate is missing.
11283 The bit rate register string is incomplete. At least one value of the register set for the data bit rate is missing.
1129 The bit rate register string could not be set. The configuration request was canceled.
1130 The submitted value for the Listen-Only mode is not valid.
1131
The Listen-Only mode could not be set. The configuration request was canceled.
1140 The CAN user notes could not be set. The configuration request was canceled.
1150 The submitted value for CAN error reporting is not valid.

1160 The submitted clock frequency is not valid.
1161 The clock frequency could not be set. The configuration request was canceled.
1162 The submitted CAN FD status is not valid.
1163 The CAN FD status could not be set. The configuration request was canceled.

LAN CONFIGURATION

1200 The submitted LAN channel is not valid.
1201 The submitted channel number is higher than the number of LAN interfaces available.

WLAN CONFIGURATION

1300 The submitted WLAN channel is not valid.
1301 The submitted channel number is higher than the number of WLAN interfaces available.
1310 The submitted operation mode is not valid.
1311 The WLAN MODE could not be set. The configuration request was canceled.
The submitted WLAN region is not valid.
1320 The submitted name (SSID) is not valid
1331 The submitted name (SSID) is not valid, because the character \# is not allowed.
1332 The name (SSID) could not be set. The configuration request was canceled.
1340 The submitted encryption type is not valid.
1341 The encryption type could not be set. The configuration request was canceled.
1350 The submitted network key is not valid.
1351 The submitted network key is not valid, because the character \# is not allowed.
1352 No network key was submitted.
1353 The submitted network key is not valid. Please enter a key with a exact length of 5 or 13 characters.
1354 The submitted network key is not valid. Please enter a key with a length between 8 and 63 characters.
1355 The network key could not be set. The configuration request was canceled.

IP CONFIGURATION (LAN, WLAN, ROUTES)
1400 The submitted value for DHCP is not valid.
The submitted value for DHCP could not be set. The configuration request was canceled.
1410 The submitted IP address is not valid. Please only use values between 0 and 255.
1411 The submitted IP address is not valid. A least one value was out of the range of 0 and 255.
1412 The submitted IP address is not valid. The first part must not be larger than 223, because this IP address range is reserved for multicast.
1413 The submitted IP address is not valid. Depending on the given subnet mask and last IP address number this address is reserved for referring to the entire network.

1414 The submitted IP address is not valid. Depending on the given subnet mask and last IP address number this address is reserved for the broadcast address or is out of the valid address range.
1415 The IP address could not be set. The configuration request was canceled.
1420 The submitted subnet mask is not valid. Please use only values from the list: 0,128,192,224,240,248,252,254,255
1421 The submitted subnet mask is not valid. The subnet mask values must be continuous like 255.255.0.0. A sequence like 255.0.255.255 is forbidden.
1422 The subnet mask could not be set. The configuration request was canceled.
1430 The submitted gateway address is not valid. Please only use values between 0 and 255 .
1431 The submitted gateway address is not valid. A least one value was out of the range of 0 and 255 .
1432 The submitted gateway address is not valid. The first part must not be larger than 223, because this IP address range is reserved for multicast.
1433 The gateway address could not be set. The configuration request was canceled.

ROUTE CONFIGURATION

1500 The submitted route index is not valid.
1501 The route with the submitted route index is not defined.
1502 The submitted route index is higher than the maximum number of routes.
1503 Referring to a single route is required.
1504 The maximum allowed number of routes has been reached. In order to add a new route, a current route must be deleted.
1510
1511

1512 The submitted value for the inverted connection establishment of the route was not valid.
1513 The inverted connection establishment of the route could not be set. The request was canceled.
1520 The state of the route is not valid.
1521
1522
1523
The state of the route could not be set. The request was canceled.
The submitted value for the handshake flag of the route is not valid. The handshake flag of the route could not be set. The request was canceled.
1530 The submitted CAN channel is not valid.
1531 The submitted CAN channel is not available.

The CAN channel of the route could not be set. The request was canceled.
The submitted IP address is not valid.
The submitted IP address is not valid. It is used by the local IP interface. Please select another one.
This route cannot be created. The combination of IP address, port number, and protocol is already in use. Please select another port number.
The IP address of the route could not be set. The request was canceled.
The submitted port number is not valid. Please choose a number between 1024 and 65535.
The submitted port number is not valid. The port must not be smaller than 1024, because this range is reserved for system services.
The submitted port number is not valid. The port 45321 is reserved for the transmission of status information and to perform a handshake between PCAN-Gateways. Please select another port number. The submitted protocol of the route is not valid. Inverted connection establishment is not available with the protocol UDP.
The submitted value for the TCP Delay flag is not valid.
The TCP Delay flag of the route could not be set. The request was canceled.
The submitted FPP value (frames per package) is not valid.
The submitted FPP value (frames per package) is out of the range of 1 and 15.
The FPP value (frames per package) of the route could not be set. The request was canceled.
The submitted filter list is not valid.
A submitted filter index is smaller than 1 or larger than the maximum number of filters.
A submitted filter is not defined.
The filter could not be applied to the route. The request was canceled.
The submitted value for the join filter property is not valid.
The join filter property could not be set. The request was canceled.
The user notes could not be set. The configuration request was canceled.
The CRC flag of the route could not be set. The request was canceled.
The submitted CRC start value is not valid.
The submitted CRC start value exceeds the limits.
The CRC start value could not be set. The configuration request was canceled.
The submitted CRC polynomial is not valid.
The submitted CRC polynomial exceeds the limits.
The CRC polynomial could not be set. The configuration request was canceled.

1590 The route status could not be reset.
1591 It was not possible to delete this route.

FILTER CONFIGURATION

1600 The submitted filter index is not valid.
1601 The filter with the submitted filter index is not defined.
1602 The submitted filter index is higher than the maximum number of filters.
1603 Referring to a single filter is required.
1610 No valid filter type was submitted.
1611 The filter type and ID range could not be set. The configuration request was canceled.
1620 No valid filter mode was submitted.
The filter mode could not be set. The configuration request was canceled.
1630 The submitted filter values are not valid.
1631 At least one of the required values for the filter type to be set is not valid.
1632 The submitted filter values exceed the limits.
1633 The submitted From value is larger than the To value.
1634 The filter values could not be set. The configuration request was canceled.
1640 The filter name could not be set. The configuration request was canceled.
1650 The filter description could not be set. The configuration request was canceled.
1690 It was not possible to delete this filter.

DEVICE CONFIGURATION

1700 The submitted device name is not valid.
1701 The device name could not be set. The configuration request was canceled.
1710 The submitted device description is not valid.
1711 The device description could not be set. The configuration request was canceled.

3.2 Commands

3.2.1 Get - Reading Settings

The command get is used to read information and settings of one or all instances of an element.

```
get ELEMENT[required] SUBELEMENT[optional] PROPERTIES[optional]
```

Element: Requesting an element is required.
Sub Element: Requesting a sub element is optional. Without a sub element, the information of all instances of an element is returned. If a sub-element is specified, only the information of one instance is returned.

Properties: Requesting one or more properties is optional. If no property is specified, all properties of the element are returned. When multiple properties are requested, they are returned in the specified order.

Examples:

With this request, you can read out the bit rate and the setting of the listen-only mode of CAN channel 1.

URL JSON:

```
[...]/json.php?jcmd={
    "command":"get",
    "element":"can",
    "sub_element":"1",
    "property":{"bitrate":"","listen_only":""}
}
```

URL: [...]/json.php?cmd=get+can+1+bitrate+listen_only

Shell Cmd:

Returns the bit rate and the setting of the listen-only mode in the specified order.

Further examples for using the command get:
Returns all information of all CAN channels.

Returns the bit rate of all CAN channels.

Returns all information of CAN channel 1.
Returns the bit rate of CAN channel 1.

3.2.2 Set - Configuring Settings

The command set is used to configure the information and settings of an element. Unlike get, the command set requires the specification of a sub element and at least one property including the value to be set.

```
set ELEMENT[required] SUBELEMENT[optional] PROPERTIES[optional]
```

Element: Requesting an element is required.
Sub Element: Requesting a sub element is required. The element device is an exception.

Properties: The specification of at least one property including the value to be set is required. The value is specified as a string in quotation marks, regardless of its variable type.

It is possible and sometimes necessary to configure multiple properties at once, for example the access data for a WLAN network or the creation of a new route.

Examples:

With this request, you can set the bit rate of CAN channel 1 to 500 kbit/s.

URL JSON:

```
[...]/json.php?jcmd={
    "command":"set",
    "element":"can",
    "sub_element":"1",
    "property":{"bitrate":"500"}
}
```

URL:
[...]/json.php?cmd=set+can+1+bitrate="500"

Shell Cmd:

Sets the bit rate of CAN channel 1 to $500 \mathrm{kbit} / \mathrm{s}$

Further examples for using the command set:
Sets the user-defined name of the PCAN-Gateway. In this case, no sub element is required.
Two properties of CAN channel 2 are set with one request.
set can 1 bitrate="500"

3.2.3 De1ete - Deleting a Route or Filter

The command delete is used to delete routes and filters. Please note that no error is returned if the route or filter to be deleted was already deleted.

```
delete ELEMENT [route | filter] SUBELEMENT[optional]
```

Element: Requesting one of the elements route or filter is required.

Sub Element: Requesting a sub element is required. It is used as an index to delete a specific route or filter.

Examples:

With this request, you can delete route 1.


```
[...]/json.php?jcmd={
    "command":"delete",
    "element":"route",
    "sub_element":"1",
    "property":""
}
```

URL:
[...]/json.php?cmd=delete+route+1

Shell Cmd:
3.2.4 Reset - Resetting a CAN Channe1 or a Route

The command reset is used to reset CAN interfaces and the status information of routes. Please note that no error is returned, if the route is not defined.

```
reset ELEMENT [route | can] SUBELEMENT[optional]
```

Element: Requesting one of the elements can or route is required.

Sub Element: Requesting a sub element is required. It is used as an index of the route or as the number of the CAN channel to be reset.

Examples:

With this request, you can reset CAN channel 1, for example after a Bus Off.

URL JSON:

```
[...]/json.php?jcmd={
    "command":"reset",
    "element":"can",
    "sub_element":"1",
    "property":""
}
```

URL:
[...]/json.php?cmd=reset+can+1

Shell Cmd:

```
reset can 1
```


3.2.5 Reboot - Restarting the PCAN-Gateway

The command reboot is used to restart the device. During this process, the PCAN-Gateway cannot be reached.

reboot

Examples:

With this request you can reboot your PCAN-Gateway.
URL JSON:

```
[...]/json.php?jcmd={
"command": "reboot",
"element": "",
"sub_element":" ",
"property":""
\}
```

URL:
[...]/json.php?cmd=reboot

Shell Cmd:

```
reboot
```


3.2.6 He1p - Documentation

In the Shell view, the command help can be used to display help for the previous command or element.

Examples:

Opens the help for the JSON
interface with an overview of all
commands and elements as well as a
list of possible errors.
Opens the help for the command set.

Opens the help for the element route with a listing of its properties.

3.3 Elements

3.3.1 Device

The element device covers general information about your PCANGateway. This includes the available communication interfaces, different version numbers, and information to identify the device.

The following table lists all properties of the device. Properties printed in bold are writable.

PROPERTY	TYPE	DESCRIPTION		
product_name order_no serial_no	string	Product name determined by the manufacturer. string string		
name	Serial number unique for this device determined by the manufacturer.			
description	string	Custom device name with a maximum length of 50 characters. Custom device description with a maximum length of 200 characters.		
hardware_version	string	Version number of the PCAN-Gateway circuit board. Version number of the installed software package.		
software_version	string	Version number of the PCAN-Gateway configuration website which is a part of the software package.		
website_version	string	Version number of the PCAN-Gateway JSON interface which is a part of the website.		
interface_version	string	integer		Number of available CAN interfaces.
:---				
CAN_count				
can_fd_support	boolean	Indicates whether CAN FD is supported (true) or		
:---				
not (false). If CAN FD is not supported, all requests				
for CAN FD properties to the CAN channels are not				
valid.				

Please note: The element device cannot be called with a sub element.

3.3.2 CAN

The element can covers information and the configuration of the available CAN interfaces. A sub element is used to access a single channel.

The following table lists all properties of can. Properties printed in bold are writable.

PROPERTY	TYPE	DESCRIPTION
channel	integer	The channel number of the CAN interface.
active	integer	This number indicates if the CAN channel is 1 = active or 0 = inactive.
status	integer	This number indicates the state of the CAN channel. $0=$ Error Active: The CAN interface is active and the error counter is lower than 96. 1 = Error Warning: Errors were detected on the bus. The error counter reached the threshold of 96. 2 = Error Passive: Errors were detected on the bus. The error counter reached the threshold of 128. 3 = Bus Off: The CAN controller was switched off. The error counter is higher than 255. $4=$ The CAN interface is inactive. $5=$ The CAN interface is sleeping.

bitrate	float	This is the nominal bit rate of the CAN channel. This value should match that one of the connected CAN bus. There is a list of available nominal bit rates depending on the clock frequency and the limits of the CAN transceiver. Examples: $\begin{aligned} & 1000=1 \mathrm{Mbit} / \mathrm{s} \\ & 800=800 \mathrm{kbit} / \mathrm{s} \\ & 500=500 \mathrm{kbit} / \mathrm{s} \\ & 250=250 \mathrm{kbit} / \mathrm{s} \\ & 200=200 \mathrm{kbit} / \mathrm{s} \\ & 125=125 \mathrm{kbit} / \mathrm{s} \\ & 100=100 \mathrm{kbit} / \mathrm{s} \\ & 95.238=95.238 \mathrm{kbit} / \mathrm{s} \\ & 83.333=83.333 \mathrm{kbit} / \mathrm{s} \\ & 50=50 \mathrm{kbit} / \mathrm{s} \\ & 47.619=47.619 \mathrm{kbit} / \mathrm{s} \\ & 33.333=33.333 \mathrm{kbit} / \mathrm{s} \\ & 20=20 \mathrm{kbit} / \mathrm{s} \\ & 10=10 \mathrm{kbit} / \mathrm{s} \\ & 5=5 \mathrm{kbit} / \mathrm{s} \end{aligned}$
clock	integer	This is the clock frequency of the CAN channel. The value is fixed to 24 MHz . On the PCANEthernet Gateway FD DR, the value can be configured to a frequency from the following list. $\begin{aligned} & 20=20 \mathrm{MHz} \\ & 24=24 \mathrm{MHz} \\ & 30=30 \mathrm{MHz} \\ & 40=40 \mathrm{MHz} \\ & 60=60 \mathrm{MHz} \\ & 80=80 \mathrm{MHz} \end{aligned}$
listen_only	integer	The state of the Listen-Only-Mode is determined with $0=$ disabled or $1=$ enabled.
user_notes	string	Custom user notes for the CAN channel with a maximum length of 125 characters.

br_def	integer	The bit rate definition mode determines how a bit rate is set. This affects the nominal CAN bit rate and the CAN FD data bit rate if CAN FD is supported by the device. 3 bit rate definition modes are available: $0=$ standard bit rates selected from the list. This is the default mode. 1 = custom bit rates defined with the bit rate register properties "br_reg_\#\#\#" and "can_fd_reg_\#\#\#". $2=$ custom bit rates defined with the bit rate string property "br_def_string".
br_def_string	string	With this string, the nominal and data bit rates can be set, when using bit rate definition mode 2. The string contains the clock frequency and bit rate register properties. The string can be generated with the software Bit Rate Calculation Tool or PCAN-View from PEAKSystem. In contrast to configuring custom bit rates with register values, the register string indicates the Time segment values instead of the Phase and Propagation segment values. Examples: - $500 \mathrm{kbit} / \mathrm{s}$ Nominal BR, 80% Sample Point $=$ f_clock=80000000, nom_brp=1, nom_tseg1=127, nom_tseg2=32, nom_sjw=32 - 500 kbit/s Nominal BR, 4 Mbit/s Data BR, 75% Sample Point $=$ f_clock $=80000000$, nom_brp $=5$, nom_tseg $1=23$, nom_tseg $2=8$, nom_sjw=8, data_brp=5, data_tseg1=2, data_tseg2=1, data_sjw=1 - $1 \mathrm{Mbit} / \mathrm{s}$ Nominal BR, $4 \mathrm{Mbit} / \mathrm{s}$ Data BR, 80% Sample Point = f_clock=80000000, nom_brp=1, nom_tseg1=63, nom_tseg2=16, nom_sjw=16, data_brp=1, data_tseg1=15, data_tseg2=4, data_sjw=4
manual_bitrate	integer	The property is deprecated and replaces by br_def. For backward compatibility, the value is automatically copied to br_def when set.
br_reg_brp	integer	Bit Rate Prescaler (Nominal Bit Rate): This value defines the radio of CPI clock and serial clock frequency. It accepts values from 1 to 1024.

br_reg_rjw	integer	The Resynchronization Jump Width (Nominal Bit Rate) defines the maximum extension or shortening of the Phase Segments for the signal resynchronization. It accepts values from 1 to 128.
br_reg_tq	integer	Time Quantum (Nominal Bit Rate): Results from the other nominal bit rate register values.
br_reg_pseg1	integer	Phase Segment 1 (Nominal Bit Rate): The phase segments are used to compensate edge phase errors at the beginning and end of the bit. Phase Segment 1 accepts values from 1 to 128.
br_reg_pseg2	integer	Phase Segment 2 (Nominal Bit Rate): The phase segments are used to compensate edge phase errors at the beginning and end of the bit. Phase Segment 2 accepts values from 1 to 128.
br_reg_propseg	integer	Propagation Segment (Nominal Bit Rate): This time segment is used to compensate the signal delays over the network and can accept values from 1 to 128.
br_reg_sp	string	This value represents the sample point of the nominal bit rate in \%. The sampling time (sample point) is determined via Time Segments 1 and 2. Time Segment 1 consists of Phase Segment 1 and the Propagation Segment. Time Segment 2 is defined by Phase Segment 2.
can_fd	integer	This value indicates if CAN FD is $1=$ enabled or $0=$ disabled. If CAN FD is enabled, the CAN data is transmitted with the faster data bit rate. This is only available for devices with CAN FD support.

data_bitrate	float	This is the data bit rate of the CAN channel. This is only available for devices with CAN FD support. This value should match that one of the connected CAN bus. The data bit rate must be equal or higher than the nominal bit rate. There is a list of available data bit rates depending on the clock frequency and the limits of the CAN transceiver. Examples for 80 MHz clock: $\begin{aligned} & 10000=10 \mathrm{Mbit} / \mathrm{s} \\ & 8000=8 \mathrm{Mbit} / \mathrm{s} \\ & 5000=5 \mathrm{Mbit} / \mathrm{s} \\ & 4000=4 \mathrm{Mbit} / \mathrm{s} \\ & 2000=2 \mathrm{Mbit} / \mathrm{s} \\ & 1000=1 \mathrm{Mbit} / \mathrm{s} \\ & 500=500 \mathrm{kbit} / \mathrm{s} \end{aligned}$
can_fd_reg_brp	integer	Bit Rate Prescaler (Data Bit Rate): This value defines the radio of CPI clock and serial clock frequency. It accepts values from 1 to 1024.
can_fd_reg_rjw	integer	The Resynchronization Jump Width (Data Bit Rate) defines the maximum extension or shortening of the Phase Segments for the signal resynchronization. It accepts values from 1 to 16.
can_fd_reg_tq	integer	Time Quantum (Data Bit Rate): Results from the other nominal bit rate register values.
can_fd_reg_pseg1	integer	Phase Segment 1 (Data Bit Rate): The phase segments are used to compensate edge phase errors at the beginning and end of the bit. Phase Segment 1 accepts values from 1 to 16.
can_fd_reg_pseg2	integer	Phase Segment 2 (Data Bit Rate): The phase segments are used to compensate edge phase errors at the beginning and end of the bit. Phase Segment 2 accepts values from 1 to 16.
can_fd_reg_propseg	integer	Propagation Segment (Data Bit Rate): This time segment is used to compensate the signal delays over the network and can accept values from 1 to 16.
can_fd_reg_sp	string	This value represents the sample point of the data bit rate in \%. The sampling time (sample point) is determined via Time Segments 1 and 2. Time Segment 1 consists of Phase Segment 1 and the Propagation Segment. Time Segment 2 is defined by Phase Segment 2.

can_error_reporting	integer	This number indicates if the error reporting for this CAN channel is $1=$ active or $0=$ inactive. If active, the values can_errors_rx and can_errors_tx are counted.
can_errors_rx	integer	Indicates the number of CAN receive errors.
can_errors_tx	integer	Indicates the number of CAN transmit errors.

Please note:

\llcorner The given limits of the bit rate register values are from the PCAN-Ethernet Gateway FD DR. The limits of your device can differ. Please check the online help with the JSON shell view or the manual of your device for the limits.
\llcorner If custom bit rates for the nominal and data bit rates are set, the "bitrate" or "data_bitrate" properties are read only. It is not possible to set custom bit rates with these properties.

ᄂ If you set the "bitrate" from a custom value to a common value from the list, you must set the property "br_def" to "0".

3.3.3 LAN

The element lan covers information and the configuration of the available LAN interfaces. A sub element is used to access a single interface.

The following table lists all properties of lan. Properties printed in bold are writable.

PROPERTY	TYPE	DESCRIPTION
channel	integer	The channel number of the LAN interface.
use_DHCP	integer	If the IP network uses DHCP, the PCAN-Gateway IP address, Subnet mask, and gateway address are assigned automatically. Otherwise, the information must be entered manually.
	$0=$ Disabled $1=$ Enabled (Not Recommended)	

IPv4	string	The IP address (IPv4) of the LAN interface. It should be noted that only values from 0 to 255 divided by a. may be used and certain address ranges are reserved.
IPv4_subnet	string	The Subnet mask indicates which part of the IP address represents the network, and which part represents the device. This subdivision is achieved by filling in the (binary) Subnet mask from left to right with the number "1". The resulting values are: 0, 128, 192, 224, 240, 248, 252, 254 and 255.
IPv4_gateway	string	The IP address (IPv4) of the gateway that manages the IP network.
MAC	string	Each device receives a unique MAC address during the manufacturing process, which can be used for identification.

3.3.4 WLAN

The element wlan covers information and the configuration of the available WLAN interfaces. A sub element is used to access a single interface.

The following table lists all properties of wlan. Properties printed in bold are writable.

PROPERTY	TYPE	DESCRIPTION
channel	integer	The channel number of the WLAN interface.
mode	integer	This number indicates the operation mode of the
		$0=$ Infrastructured Mode (Client): The PCANGateway must connect to a WLAN network of an existing access point. 1 = Ad-Hoc Mode (Host): The PCAN-Gateway hosts a WLAN network of its own. Other devices can connect to this network as an equal participant. 2 = Micro Access Point Mode (Host): The PCANGateway hosts a WLAN network of its own. Other devices can connect to this network as a client.

use_DHCP	integer	If the IP network uses DHCP, the PCAN-Gateway IP address, Subnet mask, and gateway address are assigned automatically. Otherwise, the information must be entered manually. $\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled (Not Recommended) } \end{aligned}$
IPv4	string	The IP address (IPv4) of the WLAN interface. It should be noted that only values from 0 to 255 divided by a . may be used and certain address ranges are reserved.
IPv4_subnet	string	The Subnet mask indicates which part of the IP address represents the network, and which part represents the device. This subdivision is achieved by filling in the (binary) Subnet mask from left to right with the number " 1 ". The resulting values are: $0,128,192,224,240,248,252,254$ and 255.
IPv4_gateway	string	The IP address (IPv4) of the gateway that manages the IP network.
MAC	string	Each device receives a unique MAC address during the manufacturing process, which can be used for identification.
SSID	string	If Infrastructured Mode is used, this is the name of the WLAN the PCAN-Gateway is going to connect to. If Ad-Hoc or Micro Access Point mode is used, this is the name of the WLAN provided by the PCAN-Gateway. Please note: The character \# is not allowed.
encryption_type	integer	The encryption type that is used by the WLAN. Please note: The Ad-Hoc operation mode does not support any encryption. $\begin{aligned} & 0=\text { No Encryption (Not Recommended) } \\ & 2=\text { WPA-PSK TKIP } \\ & 3=\text { WPA-PSK AES } \\ & 4=\text { WPA2-PSK TKIP } \\ & 5=\text { WPA/WPA2-PSK TKIP/AES } \\ & 6=\text { WPA2-PSK AES } \end{aligned}$
network_key	string	The password to gain access to the WLAN. Please note: The character \# is not allowed.

3.3.5 Route

The element route covers information and the configuration of Send routes (CAN-to-IP) and Receive routes (IP-to-CAN) routes. With a sub element the information of a single route can be accessed via its index number.

Please note:

ᄂ Properties with a default value are not required for adding a new route.

ᄂ Transferring data between 2 PCAN-Gateways always consists of a Send and a Receive route. Note that both should use the same transmission protocol (TCP or UDP) and the same port.
\smile Any combination of the IP address, port, and protocol can only be used once.

The following table lists all properties of route. Properties printed in bold are writable.

PROPERTY	TYPE	DESCRIPTION
index	integer	For saving routes, the PCAN-Gateway uses a table with 16 rows that are addressed with this unique index.
active	integer	This number indicates if the route is $1=$ active or $0=$ inactive (default value).

status	integer	This number indicates the status of the route. It is created from the properties active, direction, connection_inverted, peers_connected, and no_handshake. $0=$ The route is inactive. 1 = For Send routes: The route is active. $2=$ Warning! The route is active but not connected with the remote site. 3 = For Receive routes: The route is active and connected with the remote site. 4 = Warning! More than one remote site tries to connect to this route. Please note: This interference is not possible anymore. The first remote site establishes the connection and further remote sites are ignored. $5=$ The route is active, but the PCAN-Gateway handshake is inactive. No status information is gathered for this route.
direction	string	This property determines the direction of the route: send $=$ CAN $>$ IP: Within a Send route the data of a CAN channel is forwarded over the IP interface. When adding a Send route, an IP address is required. receive $=I P>C A N$: Within a Receive route the PCAN-Gateway receives data via the IP interface and forwards it to a CAN channel. In this case the IP address of the PCAN-Gateway is used and the string "Local IP" is returned. When adding a receive route, an IP address is not required.
no_handshake	integer	If this property is active, no handshake will be performed and therefore no status information will be gathered for this route. Use this option for communication with your own application. $\begin{aligned} & 0=\text { inactive (default value) } \\ & 1=\text { active } \end{aligned}$

connection_inverted	integer	This property determines how the connection of the route is established.
		$0=$ Normal (default value). Establishing the connection of a Send route is handled by the sending PCAN-Gateway. 1 = Inverted. Establishing the connection of a Send route is handled by the receiving PCANGateway.
user_notes	string	Custom user notes for the route with a maximum length of 125 characters. By default, the notes are set to be empty when adding a route.
protocol	string	This determines which transmission protocol should be used by the route. Possible values are:
		TCP = Transmission Control Protocol: establishes a connection between two participants and monitors their communication. If data packets are lost for example, they are retransmitted.
		UDP = User Datagram Protocol: sends the data packets directly into the network without establishing a connection. With this protocol, error free transmission is not guaranteed. The advantage UDP has over TCP is the lower demand on performance.
fpp	integer	Frames per Packet: This value specifies the maximum number of CAN frames that can be transmitted with an IP data packet. This selection is only needed for Send routes when using the UDP protocol. Possible values are numbers from 1 to 15 . Default value is 15 .
peers_connected	integer	This number indicates if a remote site (another PCAN-Gateway or PC with Virtual PCANGateway) is connected to this route or when using older software versions how many Send routes are connected to this Receive route. The value peers_connected is set via the PCANGateway status channel.

tcp_connected	integer	When using the TCP protocol, this number indicates if the remote site (another PCANGateway or PC with Virtual PCAN-Gateway) is connected to this route.
CAN_channel	integer	This number indicates the CAN channel used by this route.
		$\begin{aligned} & 1=\text { CAN channel } 1 \\ & 2=\text { CAN channel } 2 \end{aligned}$
CAN_packets	integer	Indicates the number of transferred CAN packets. A CAN packet can contain multiple CAN frames.
CAN_frames	integer	Indicates the number of transferred CAN frames.
CAN_errors	integer	Indicates the number of errors occurred when reading or writing CAN frames. Please note: This is not equivalent to CAN error frames.
CAN_frame_drop	integer	Indicates the number of CAN frames which were not transferred.
CAN_frame_retry	integer	Indicates the number of CAN frames which were transferred at retry.
CAN_timeout	integer	Indicates the time between retries of sending a CAN frame.
CAN_retry	integer	Indicates the maximum number of retries before a CAN frame is dropped.
IP_address	string	This is the IP address (IPv4) of the destination device used by this route. It should be noted that only values from 0 to 255 divided by a . may be used and certain address ranges are reserved. When creating a receive route, this value is not required.
IP_port	integer	Indicates the port used by the route. It can be between 1024 and 65535. Values below 1024 are reserved for various system services and must therefore not be used. Port 45321 is reserved for the transmission of status information and to perform a handshake between PCAN-Gateways.
IP_packets	integer	Indicates the number of transferred IP packets.
IP_errors	integer	Indicates the number of IP errors occurred.

TCP_delay	integer	TCP Delay: If this property is active, the transmission of data packets via TCP might be delayed to lower the demand on performance. If this option is disabled, every CAN frame is transmitted as fast as possible. $\begin{aligned} & 0=\text { inactive } \\ & 1=\text { active (default value) } \end{aligned}$
CRC_on	integer	If this property is active, CAN frames are transmitted with a CRC32 checksum which is created from DLC, flags, CAN ID, and data of the CAN frame together with the CRC start value and polynomial. For a valid connection with CRC, the values CRC_on, CRC_start_value, CRC_polynom of the Send and Receive route must match. $\begin{aligned} & 0=\text { inactive (default value) } \\ & 1=\text { active } \end{aligned}$
CRC_start_value	string	The CRC start value is used for creating the CRC32 checksum. Enter a hexadecimal value from 0 to FFFFFFFF. Default is 00000000 .
CRC_polynom	string	The CRC polynomial is used for creating the CRC32 checksum. Enter a hexadecimal value from 0 to FFFFFFFF. Default is 4 c 11 db 7 .
CRC_errors	integer	This indicates the number of incoming frames with wrong CRCs.
filter	string	This property determines the filters used by the route. Every used filter is listed by its index number. Multiple filters are divided by a comma. By default, no filter is set when adding a route.
filter_join	integer	Filters are joined with: This property specifies how multiple filters are linked. If you use several Whitelist filters, you should choose Logical OR. If you attach multiple Blacklist filters to a single route, the selection Logical AND is recommended.
		$\begin{aligned} & 0=\text { logical OR (default value) } \\ & 1=\text { logical AND } \end{aligned}$
		Note: A single Range filter is realized with a composition of multiple Mask filters. The Joined Filters property will also affect this.

3.3.6 Filter

The element filter covers information and the configuration of filters that can be used by routes. With a sub element the information of a single filter can be accessed via its index number.

Please note:

\llcorner Properties with a default value are not required for adding a new filter.

The following table lists all properties of filter. Properties printed in bold are writable.

PROPERTY	TYPE	DESCRIPTION
index	integer	For saving filters, the PCAN-Gateway uses a table with 32 rows that are addressed with this unique index.
filter_name	string	A custom name with a maximum length of 50 characters can be assign to a filter. Default value is "Filter" plus its index number.
filter_type	integer	Determines the filter type and the ID mode. The filter types "Range" and "Mask" specify how the CAN IDs, to be filtered, are defined. The ID modes specify if the CAN message will be a Standard frame with an 11 Bit identifier or an Extended frame with a 29 Bit identifier.
		$\begin{aligned} & 1 \text { = Range filter with } 11 \text { Bit IDs } \\ & 2=\text { Range filter with } 29 \text { Bit IDs } \\ & 3=\text { Mask filter with } 11 \text { Bit IDs } \\ & 4=\text { Mask filter with } 29 \text { Bit IDs } \end{aligned}$

filter_mode	integer	The mode indicates how the defined filter is interpreted. $0=$ Blacklist: If this mode is selected, the filter will be inverted. That means every message with a CAN ID that matches the filter specifications will not be transmitted. $1=$ Whitelist (default value): A filter using this mode will transmit every CAN message whose ID matches the filter specifications.
range_from	string	For Range filters only: A lower and an upper limit have to be specified to set the range. This value marks the lower limit of the filter range. The From value has to be lower than the To value.
range_to	string	For Range filters only: A lower and an upper limit have to be specified to set the range. This value marks the upper limit of the filter range.
mask_acc_code ${ }^{1}$	string	For Mask filters only: The ID of the CAN message to be transmitted is compared bitwise with the "Acceptance Code" value.
mask_acc_mask ${ }^{1}$	string	For Mask filters only: The "Acceptance Mask" specifies which bit positions are relevant when the ID is compared with the "Acceptance Code".
user_notes	string	Additional information with a length of 200 characters can be entered for each filter. By default, the notes are set to be empty when adding a filter.
use_count	integer	This number represents how many times the filter is used.
use_on_routes	string	This property returns the routes to which the filter is attached to. For this, the indices of the routes are listed divided by commas.

[^0]
[^0]: ${ }^{1}$ Note: Up to software version 2.9.0, the mask_acc_code and mask_acc_mask values were swapped internally. After a software update to a higher version, check the correct function of your Mask filter settings.

