PCAN-PC/104
CAN Interface for PC/104

User Manual

Document version 2.6.0 (2019-03-06)
Relevant products

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAN-PC/104 Single Channel</td>
<td>One CAN channel</td>
<td>IPEH-002054</td>
</tr>
<tr>
<td>PCAN-PC/104 Dual Channel</td>
<td>Two CAN channels</td>
<td>IPEH-002055</td>
</tr>
<tr>
<td>PCAN-PC/104 Single Channel opto-decoupled</td>
<td>One CAN channel, galvanic isolation for CAN connection</td>
<td>IPEH-002056</td>
</tr>
<tr>
<td>PCAN-PC/104 Dual Channel opto-decoupled</td>
<td>Two CAN channels, galvanic isolation for CAN connections</td>
<td>IPEH-002057</td>
</tr>
</tbody>
</table>

The cover picture shows the product PCAN-PC/104 Dual Channel opto-decoupled. Other product models have an identical form factor but vary in equipment.

PCAN® is a registered trademark of PEAK-System Technik GmbH. CANopen® and CiA® are registered community trade marks of CAN in Automation e.V.

All other product names mentioned in this document may be the trademarks or registered trademarks of their respective companies. They are not explicitly marked by “™” and “®”.

Copyright © 2019 PEAK-System Technik GmbH
Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH
Otto-Roehm-Strasse 69
64293 Darmstadt
Germany

Phone: +49 (0)6151 8173-20
Fax: +49 (0)6151 8173-29

www.peak-system.com
info@peak-system.com

Document version 2.6.0 (2019-03-06)
Contents

1 Introduction 5
1.1 Properties at a Glance 5
1.2 System Requirements 6
1.3 Scope of Supply 7

2 Configuration and Installation 8
2.1 Configuring the Card 8
 2.1.1 Interrupt 9
 2.1.2 I/O Address Range 10
2.2 Installing the Software 12
2.3 Installing the Hardware 13
2.4 Modifying the Computer's BIOS Settings 15
 2.4.1 Indicating Used Interrupts 15
 2.4.2 Deactivating the APIC Mode 16

3 Connecting the CAN Bus 17
3.1 Connection over D-Sub Connector 17
 3.1.1 Slot Bracket with D-Sub Connectors 19
3.2 Voltage Supply of External Devices 20
3.3 Cabling
 3.3.1 Termination 22
 3.3.2 Example of a Connection 22
 3.3.3 Maximum Bus Length 23

4 Software and API 24
4.1 Monitor Software PCAN-View 24
 4.1.1 Receive/Transmit Tab 27
 4.1.2 Trace Tab 29
 4.1.3 PCAN-PC/104 Tab 30
 4.1.4 Status Bar 30
4.2 Linking Own Programs with PCAN-Basic 31
 4.2.1 Features of PCAN-Basic 32
 4.2.2 Principle Description of the API 33
 4.2.3 Notes about the License 34

5 Technical Specifications 35

Appendix A CE Certificate 37

Appendix B Dimension Drawing 38

Appendix C Quick Reference 39
1 Introduction

The PCAN-PC/104 card enables the connection of one or two CAN networks to a PC/104 system. Multiple PCAN-PC/104 cards can easily be operated using interrupt sharing.

The card is available as a single or dual-channel version. The optodecoupled versions also guarantee galvanic isolation of up to 500 Volts between the PC and the CAN sides.

The monitor software PCAN-View and the programming interface PCAN-Basic for the development of applications with CAN connection are included in the scope of supply.

Device drivers exist for different operating systems, so programs can easily access a connected CAN bus.

Tip: At the end of this manual (Appendix C) you can find a Quick Reference with brief information about the installation and operation of the PCAN-PC/104 card.

1.1 Properties at a Glance

- Form factor PC/104
- Multiple PC/104 cards can be operated in parallel (interrupt sharing)
- 14 port and 8 interrupt addresses are available for configuration using jumpers
- 1 or 2 High-speed CAN channels (ISO 11898-2)
- Bit rates from 5 kbit/s up to 1 Mbit/s
Compliant with CAN specifications 2.0A (11-bit ID) and 2.0B (29-bit ID)

Connection to CAN bus through D-Sub slot bracket, 9-pin (in accordance with CiA® 303-1)

NXP SJA1000 CAN controller, 16 MHz clock frequency

NXP PCA82C251 CAN transceiver

5-Volt supply to the CAN connection can be connected through a solder jumper, e.g. for external bus converter

Galvanic isolation on the CAN connection up to 500 V (only opto-decoupled models), separate for each CAN channel

Extended operating temperature range of -40 to +85 °C (-40 to +185 °F)

Note: This manual describes the use of the PCAN-PC/104 card with **Windows**. You can find device drivers for **Linux** and the corresponding application information on the provided DVD in the directory branch **Develop** and on our website under www.peak-system.com/linux.

1.2 System Requirements

- PC/104 stack with ISA bus (according to the PC/104 specification)

- Operating system Windows 10, 8.1, 7 (32-bit), or Windows CE 6.x (x86 and ARMv4 processor support), or Linux (32/64-bit)
1.3 Scope of Supply

- PCAN-PC/104 card
- Slot bracket with D-Sub connectors for the CAN bus
- Device drivers for Windows 10, 8.1, 7 (32-bit) and Linux (32/64-bit)
- Device driver for Windows CE 6.x (x86 and ARMv4 processor support)
- CAN monitor PCAN-View for Windows
- CAN monitor PCAN-View for DOS
- Programming interface PCAN-Basic for developing applications with CAN connection
- Programming interfaces for standardized protocols from the automotive sector
- Manual in PDF format
2 Configuration and Installation

This chapter covers the configuration, the software setup for the PCAN-PC/104 card under Windows, and the card installation in the computer.

2.1 Configuring the Card

Before installing the PCAN-PC/104 card into the computer you may need to configure it. For each CAN channel an interrupt (IRQ) and an I/O address range is set for operation in the computer.

At delivery the PCAN-PC/104 card has the following default settings:

<table>
<thead>
<tr>
<th>CAN channel</th>
<th>IRQ</th>
<th>I/O address range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>300h – 31Fh</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>320h – 33Fh</td>
<td>Dual Channel model only</td>
</tr>
</tbody>
</table>

Tip: If the given resources are not permanently allocated by other devices, you can skip the configuration and directly continue with the following manual section 2.2.

For a configuration differing from the default settings you need to set jumpers on the PCAN-PC/104 PCB according to the following explanations.

Attention! Electrostatic discharge (ESD) can damage or destroy components on the PCAN-PC/104 card. Take precautions to avoid ESD when handling the card.
2.1.1 Interrupt

An interrupt (IRQ) must be assigned to each CAN channel. This is done with a single jumper on jumper field JP1 for CAN channel 1 and jumper field JP2 for CAN channel 2 (latter refers only to the Dual Channel model). The PCAN-PC/104 card supports the interrupts 3, 4, 5, 7, 10, 11, 12, and 15. The default setting at delivery for CAN channel 1 is interrupt 10, for CAN channel 2 interrupt 5.

![Figure 1: Position of the jumper fields for setting the interrupts, JP1 for CAN channel 1 (lower jumper field), JP2 for CAN channel 2 (upper jumper field, Dual Channel model only)](image)

It is possible to share the same interrupt between two existing CAN channels. Therefore, you can configure the same interrupt when using two PCAN-PC/104 cards in the same computer.

Tip: We suggest to configure different interrupts as long as resources allow it and use interrupt sharing only if this is not the case.
2.1.2 I/O Address Range

Each CAN channel must be assigned to an unique I/O address range in the computer. An address space from 200h up to 39Fh and 3E0h to 3FFh (h = hexadecimal) is available. PCAN-PC/104 uses 32 addresses beginning from the configured base address. The configuration is done on jumper field JP3 for CAN channel 1 and jumper field JP4 for CAN channel 2 (latter refers only to the Dual Channel model). One or several jumpers are needed for each jumper field.

Figure 2: Position of the jumper fields for setting the I/O base addresses, JP3 for CAN channel 1 (left jumper field), JP4 for CAN channel 2 (right jumper field, Dual Channel model only)

The following table shows the possible settings. The X stands for a set jumper. The default settings at delivery for CAN channels 1 and 2 are highlighted.

Continued on the next page
<table>
<thead>
<tr>
<th>Jumper field JP3/JP4</th>
<th>I/O address range</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>200h – 21Fh</td>
</tr>
<tr>
<td>X</td>
<td>220h – 23Fh</td>
</tr>
<tr>
<td>X</td>
<td>240h – 25Fh</td>
</tr>
<tr>
<td>X</td>
<td>260h – 27Fh</td>
</tr>
<tr>
<td>X</td>
<td>280h – 29Fh</td>
</tr>
<tr>
<td>X</td>
<td>2A0h – 2BFh</td>
</tr>
<tr>
<td>X</td>
<td>2C0h – 2DFh</td>
</tr>
<tr>
<td>X</td>
<td>2E0h – 2FFh</td>
</tr>
<tr>
<td>X</td>
<td>300h – 31Fh</td>
</tr>
<tr>
<td>X</td>
<td>320h – 33Fh</td>
</tr>
<tr>
<td>X</td>
<td>340h – 35Fh</td>
</tr>
<tr>
<td>X</td>
<td>360h – 37Fh</td>
</tr>
<tr>
<td>X</td>
<td>380h – 39Fh</td>
</tr>
<tr>
<td>X</td>
<td>3E0h – 3FFh</td>
</tr>
</tbody>
</table>
2.2 Installing the Software

Install the driver before you install the card.

Do the following to install the driver:

1. Start Intro.exe from the supplied DVD.
 The navigation program starts.
2. Select in the main menu Drivers and click on Install now.
3. Confirm the message of the User Account Control related to "Installer database of PEAK Drivers".
 The driver setup starts.
4. Follow the program instructions until the Custom Setup is displayed.

![Figure 3: Driver selection in the PEAK-Drivers Setup](image)

5. Deselect the CAN device drivers and select CAN device drivers Non-Plug-and-Play (see Figure 3).
6. Follow the further instructions.

2.3 Installing the Hardware

Do the following to install card into the PC/104 stack:

Attention! Electrostatic discharge (ESD) can damage or destroy components on the card. Take precautions to avoid ESD.

1. Shut down the computer.
2. Disconnect the computer from the power supply.
3. Plug the PCAN-PC/104 card onto a PC/104 connector.
4. Interconnect the connector for each CAN channel on the PCAN-PC/104 card (see Figure 4) with the CAN connector of the slot bracket using the attached flat cable.
5. Reconnect the power supply of the computer.

Note: Before switching on the computer, please follow the procedure for modifying the computer's BIOS settings described in the following section.
Figure 4: Connectors for the flat cables to the CAN connectors,
J3 for CAN channel one (lower position),
J4 for CAN channel 2 (upper position, Dual Channel model only)
2.4 Modifying the Computer's BIOS Settings

To ensure a flawless operation of the PCAN-PC/104 card it is necessary that you adjust settings in the BIOS setup of the computer:

- Indicate used interrupts
- Deactivate the APIC mode

Note: Due to a diversity of existing BIOS setup versions for computers we cannot give detailed instructions here. Instead we indicate common setting names.

In order to know how to start the computer's BIOS setup please consult the corresponding documentation. Usually you can enter the BIOS setup by pressing the Del or F2 key shortly after switching on the computer.

2.4.1 Indicating Used Interrupts

By indicating the interrupts that are set on the PCAN-PC/104 card, you avoid that the corresponding resources are automatically assigned to other devices and that this results in conflicts.

In the BIOS setup itself you can often find the settings for the interrupts under a menu item containing the text PnP. For the interrupt(s) used by PCAN-PC/104 change the setting to **Reserved** or **Legacy ISA**.
2.4.2 Deactivating the APIC Mode

Note: Do not mix up APIC with ACPI.

The APIC mode is a certain type of interrupt management in a computer.

If the APIC mode is active in your computer, you must deactivate it so that the PCAN-PC/104 card can work properly with interrupts.

Do the following to determine in Windows if the APIC mode is active:

Open the Windows **Device Manager**.

1. Select the menu entry **View > Resources by type**.
2. Open the branch of **Interrupt request (IRQ)**.

 If entries with interrupt numbers greater than 15 are listed, the APIC mode is active and you must deactivate it.

Do the following to deactivate the APIC mode:

Important note: When you deactivate the APIC mode in the BIOS setup, it may happen that you must reinstall Windows afterwards, because it cannot start anymore due to the low-level setting.

Restart the computer and switch to the BIOS setup.

1. Search for the APIC setting and deactivate it.
2. Save the changes in the BIOS and quit the BIOS setup.
3. If Windows doesn't start properly, reinstall it or perform a repair installation.
3 Connecting the CAN Bus

3.1 Connection over D-Sub Connector

A High-speed CAN bus (ISO 11898-2) is connected to the 9-pin D-Sub connector. The pin assignment corresponds to the specification CiA® 303-1.

![Pin assignment diagram](image)

Figure 5: Pin assignment High-speed CAN (view onto connector of the slot bracket)

Low power devices (e.g. bus converters) can be supplied directly with 5 volts over pin 1 and/or pin 9 of the CAN connector. Pin 1 and/or pin 9 are not in use at the delivery state. For more information see the next section 3.2.
The pin assignment between the D-Sub port and the 10-pin connector on the PCAN-PC/104 card is as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
<th>Assignment D-Sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 V (optional)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>CAN_L</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>CAN_H</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>not connected</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>not connected</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>+5 V (optional)</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>not connected</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>not connected</td>
<td></td>
</tr>
</tbody>
</table>

Tip: You can connect a CAN bus with a different transmission standard via a bus converter. PEAK-System offers different bus converter modules (e.g. PCAN-TJA1054 for a Low-speed CAN bus according to ISO 11898-3).
3.1.1 Slot Bracket with D-Sub Connectors

To connect a CAN bus to the PCAN-PC/104 card, use the supplied slot brackets. After you have connected the cables from the slot bracket with the 10-pin sockets, you can connect the CAN busses with the D-Sub sockets.
3.2 Voltage Supply of External Devices

External devices with low power consumption (e.g. bus converters) can be directly supplied via the CAN connector (independently for each connector on the Dual Channel versions). With a solder bridge per CAN channel on the PCAN-PC/104 board, a 5-Volt supply can optionally be routed to pin 1 and/or pin 9 of the D-Sub connector.

The opto-decoupled models of the card contain an interconnected DC/DC converter. Therefore, the current output is limited to about 50 mA.

Do the following to activate the voltage supply:

⚠️ Risk of short circuit! Solder with great care to avoid unwanted short circuits on the card.

⚠️ Attention! Electrostatic discharge (ESD) can damage or destroy components on the card. Take precautions to avoid ESD.

Set the solder bridge(s) on the card according to the desired settings.

Figure 9 shows the solder field positions on the card. The table below contains the possible settings.
Figure 9: Position of the solder jumper fields for the 5-Volt supply (JP5 lower position, JP6 upper position)

<table>
<thead>
<tr>
<th>D-Sub connector</th>
<th>Solder field</th>
<th>5-Volt supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without</td>
</tr>
<tr>
<td>CAN 1</td>
<td>JP5</td>
<td></td>
</tr>
<tr>
<td>CAN 2</td>
<td>JP6</td>
<td></td>
</tr>
</tbody>
</table>

⚠️ **Risk of short circuit!** The 5-Volt supply is not protected separately. Therefore, turn off the computer before you connect and disconnect CAN cables or peripheral systems.
3.3 Cabling

3.3.1 Termination

A High-speed CAN bus (ISO 11898-2) must be terminated with 120 ohms at both ends. The termination prevents interfering signal reflections and ensures the proper operation of the transceivers of the connected CAN nodes (CAN interfaces, control devices).

The PCAN-PC/104 card does not have an internal termination. Use the adapter on a terminated CAN bus.

3.3.2 Example of a Connection

![Simple CAN connection](image)

Figure 10: Simple CAN connection

This example shows a connection between the PCAN-PC/104 card and a control unit. The connection cable is terminated with 120 ohms at both ends.
3.3.3 Maximum Bus Length

High-Speed-CAN networks may have bit rates of up to 1 Mbit/s. The maximum bus length is primarily depending on the bit rate.

The following table shows the maximum CAN bus length at different bit rates:

<table>
<thead>
<tr>
<th>Bit rate</th>
<th>Bus length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mbit/s</td>
<td>40 m</td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>110 m</td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>240 m</td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>500 m</td>
</tr>
<tr>
<td>50 kbit/s</td>
<td>1.3 km</td>
</tr>
<tr>
<td>20 kbit/s</td>
<td>3.3 km</td>
</tr>
<tr>
<td>10 kbit/s</td>
<td>6.6 km</td>
</tr>
<tr>
<td>5 kbit/s</td>
<td>13.0 km</td>
</tr>
</tbody>
</table>

The listed values have been calculated on the basis of an idealized system and can differ from reality.
4 Software and API

This chapter covers the provided software PCAN-View and the programming interface PCAN-Basic.

4.1 Monitor Software PCAN-View

PCAN-View is simple Windows software for viewing, transmitting, and logging CAN and CAN FD messages.

Note: This chapter describes the use of PCAN-View with a CAN adapter.

Figure 11: PCAN-View for Windows
Do the following to start and initialize PCAN-View:

1. Open the Windows Start menu and select **PCAN-View**. The **Connect** dialog box appears.

![Figure 12: Selection of the CAN specific hardware and parameters (exemplary)](image)

2. Select an interface from the list and continue with step 7.

3. If no entry is in the list, press the button **Add**. The dialog box **Add CAN hardware** appears.

![Figure 13: Selection of the hardware](image)

4. Select **PEAK ISA-CAN SJA**.
5. Enter the port address and the interrupt (see section 2).
6. Confirm your input with **OK**.
7. From the drop-down list, select the **Bit rate** that is used by all nodes on the CAN bus.

 Tip: You can create custom bit rates by using the button (▶).

8. Under **Filter settings** you can limit the range of CAN IDs to be received, either for standard frames (11-bit IDs) or for extended frames (29-bit IDs).
9. Activate the **Listen-only mode** if you do not actively participate in the CAN traffic and just want to observe. This also avoids an unintended disruption of an unknown CAN environment (e.g. due to different bit rates).
10. Confirm the settings in the dialog box with **OK**. The main window of PCAN-View appears (see Figure 14).
4.1.1 Receive/Transmit Tab

Figure 14: Receive/Transmit tab

The Receive/Transmit tab is the main element of PCAN-View. It contains two lists, one for received messages and one for the transmit messages. The CAN data format is hexadecimal by default.

Do the following to transmit a CAN message with PCAN-View:

1. Select the menu command Transmit > New Message (alternatively or \text{Ins}).

The New Transmit Message dialog box appears.

Figure 15: Dialog box new transmit message
2. Enter the ID, the data **Length**, and the CAN message **Data**.

Note: With the program version 4 of PCAN-View, the DLC field was renamed to **Length**. Latter reflects the actual data length.

3. Enter a value into the **Cycle Time** field to choose manually or periodically message transmission. Enter a value greater than 0 to transmit periodically. Enter the value 0 to transmit only manually.

4. Confirm the entries with **OK**.

The created transmit message appears on the **Receive/Transmit** tab.

5. Trigger selected transmit messages manually with the menu command **Transmit > Send** (alternatively **Space** bar). The manual transmission for CAN messages being transmitted periodically is carried out additionally.

Tip: Using the menu command **File > Save** the current transmit messages can be saved to a list and loaded for reuse later on.
4.1.2 Trace Tab

On the Trace tab, the data tracer (data logger) of PCAN-View is used for logging the communication on a CAN bus. During this process the messages are cached in the working memory of the PC. Afterwards they can be saved to a file.

The Tracer runs either in linear or in ring buffer mode. The linear buffer mode stops the Tracer as soon as the buffer is full. The ring buffer mode overwrites the oldest messages by new ones as soon as the buffer is full.
4.1.3 PCAN-PC/104 Tab

The PCAN-PC/104-Plus tab contains some detailed information about the hardware and driver.

4.1.4 Status Bar

The status bar shows information about the current CAN connection, about error counters (Overruns, QXmtFull) and shows error messages.

You can find further information about the use of PCAN-View in the help which you can invoke in the program via the Help menu or with the F1 key.
4.2 Linking Own Programs with PCAN-Basic

On the provided DVD, you can find files of the programming interface PCAN-Basic in the directory branch `Develop`. This API provides basic functions for linking own programs to CAN- and CAN FD interfaces by PEAK-System and can be used for the following operating systems:

- Windows 10, 8.1, 7 (32/64-bit)
- Windows CE 6.x (x86/ARMv4)
- Linux (32/64-bit)

The API is designed for cross-platform use. Therefore software projects can easily ported between platforms with low efforts. For all common programming languages examples are available.
Beginning with version 4, PCAN-Basic supports the new CAN FD standard (CAN with Flexible Data Rate) which is primarily characterized by higher bandwidth for data transfer.

4.2.1 Features of PCAN-Basic
- API for developing applications with CAN and CAN FD connection
- Access to the CAN channels of a PCAN-Gateway via the new PCAN-LAN device type
- Supports the operating systems Windows 10, 8.1, 7 (32/64-bit), Windows CE 6.x, and Linux (32/64-bit)
- Multiple PEAK-System applications and your own can be operated on a physical channel at the same time
- Use of a single DLL for all supported hardware types
- Use of up to 16 channels for each hardware unit (depending on the PEAK CAN interface used)
- Simple switching between channels of a PEAK CAN interface
- Driver-internal buffering of 32,768 messages per CAN channel
- Precision of time stamps on received messages up to 1 μs (depending on the PEAK CAN interface used)
- Supports PEAK-System’s trace formats version 1.1 and 2.0 (for CAN FD applications)
- Access to specific hardware parameters, such as listen-only mode
- Notification of the application through Windows events when a message is received
- Extended system for debugging operations
- Multilingual debugging output
Output language depends on operating system
Debugging information can be defined individually

Tip: An overview of the API functions is located in the header files. You can find detailed information about the PCAN-Basic API on the provided DVD in the text and help files (file name extensions .txt and .chm).

4.2.2 Principle Description of the API

The PCAN-Basic API is the interface between the user application and device driver. In Windows operating systems this is a DLL (Dynamic Link Library).

The sequence of accessing the CAN interface is divided into three phases:

1. Initialization
2. Interaction
3. Completion

Initialization

A channel must be initialized before using it. This is done by the simple call of the function CAN_Initialize for CAN and CAN_InitializeFD for CAN FD. Depending on the type of the CAN hardware, up to 16 CAN channels can be opened at the same time. After a successful initialization the CAN channel is ready. No further configuration steps are required.

Interaction

For receiving and transmitting messages the functions CAN_Read and CAN_Write as well as CAN_ReadFD and CAN_WriteFD are available. Additional settings can be made, e.g. setting up message filters to confine to specific CAN IDs or setting the CAN controller to listen-only mode.
When receiving CAN messages, events are used for an automatic notification of an application (client). This offers the following advantages:

- The application no longer needs to check for received messages periodically (no polling).
- The response time at reception is reduced.

Completion

To end the communication the function `CAN_Uninitialize` is called in order to release the reserved resources for the CAN channel, among others. In addition the CAN channel is marked as "Free" and is available to other applications.

4.2.3 Notes about the License

Device drivers, the interface DLL, and further files needed for linking are property of the PEAK-System Technik GmbH and may be used only in connection with a hardware component purchased from PEAK-System or one of its partners. If a CAN hardware component of third-party suppliers should be compatible to one of PEAK-System, then you are not allowed to use or to pass on the driver software of PEAK-System.

If a third-party supplier develops software based on the PCAN-Basic and problems occur during the use of this software, consult the software provider.
5 Technical Specifications

Connectors

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/104</td>
<td>ISA bus with 8 MHz clock rate, 16 bit bus width</td>
</tr>
<tr>
<td>CAN</td>
<td>D-Sub (m), 9 pins</td>
</tr>
<tr>
<td></td>
<td>Pin assignment according to specification CiA® 303-1</td>
</tr>
</tbody>
</table>

CAN

<table>
<thead>
<tr>
<th>Specification</th>
<th>ISO 11898-2, High-speed CAN 2.0A (standard format) and 2.0B (extended format)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit rates</td>
<td>5 kbit/s - 1 Mbit/s</td>
</tr>
<tr>
<td>Controller</td>
<td>NXP SJA1000</td>
</tr>
<tr>
<td>Transceiver</td>
<td>NXP PCA82C251</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>PCAN-PC/104: none</td>
</tr>
<tr>
<td></td>
<td>PCAN-PC/104 opto: up to 500 V, separate for each CAN channel</td>
</tr>
<tr>
<td>Supplying external</td>
<td>PCAN-PC/104: D-Sub pin 1/9; 5 V, max. 100 mA</td>
</tr>
<tr>
<td>devices</td>
<td>PCAN-PC/104 opto: D-Sub pin 1/9; 5 V, max. 50 mA via solder bridge(s), not assigned at delivery</td>
</tr>
</tbody>
</table>

Power supply

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>5 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current consumption</td>
<td></td>
</tr>
<tr>
<td>PCAN-PC/104 Single Channel:</td>
<td>max. 150 mA</td>
</tr>
<tr>
<td>PCAN-PC/104 Dual Channel:</td>
<td>max. 170 mA</td>
</tr>
<tr>
<td>PCAN-PC/104 Single Channel opto:</td>
<td>max. 210 mA</td>
</tr>
<tr>
<td>PCAN-PC/104 Dual Channel opto:</td>
<td>max. 270 mA</td>
</tr>
</tbody>
</table>

Measures

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>96 x 91 x 24 mm</td>
</tr>
<tr>
<td></td>
<td>(see also dimension drawing Appendix B on page 38)</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>PCAN-PC/104 Single Channel:</td>
<td>57 g</td>
</tr>
<tr>
<td>PCAN-PC/104 Dual Channel:</td>
<td>63 g</td>
</tr>
<tr>
<td>PCAN-PC/104 Single Channel opto:</td>
<td>59 g</td>
</tr>
<tr>
<td>PCAN-PC/104 Dual Channel opto:</td>
<td>65 g</td>
</tr>
</tbody>
</table>
Environment

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-40 - +85 °C (-40 - +185 °F)</td>
</tr>
<tr>
<td>Temperature for storage and transport</td>
<td>-40 - +125 °C (-40 - +257 °F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>15 - 90 %, not condensing</td>
</tr>
</tbody>
</table>

Conformity

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **EMV** | Directive 2014/30/EU
 | DIN EN 55024:2016-05
 | DIN EN 55032:2016-02 |
| **RoHS 2** | Directive 2011/65/EU
 | DIN EN 50581 VDE 0042-12:2013-02 |
Appendix A CE Certificate

EU Declaration of Conformity

This declaration applies to the following product:
Product name: PCAN-PC/104
Inventor number(s): IPEH-002054/55/36/37
Manufacturer: PEAK-System Technik GmbH
Otto-Roehm-Strasse 69
64293 Darmstadt
Germany

We declare under our sole responsibility that the mentioned product is in conformity with the following directives and the affiliated harmonized standards:

EU Directive 2011/65/EU (RoHS 2)
DIN EN 50581 VDE 0042-12:2013-02
Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances; German version EN 50581:2012

EU Directive 2014/30/EU (Electromagnetic Compatibility)
DIN EN 55024:2016-05
DIN EN 55032:2016-02
Electromagnetic compatibility of multimedia equipment - Emission Requirements (CISPR 32:2015); German version EN 55032:2015

Darmstadt, 22 February 2019

Uwe Wilhelm, Managing Director
Appendix B Dimension Drawing

Figure 20: View PCAN-PC/104

The figure does not show the actual size of the product.
Appendix C Quick Reference

Default setting at delivery

<table>
<thead>
<tr>
<th>CAN channel</th>
<th>IRQ</th>
<th>I/O address range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>300h – 31Fh</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>320h – 33Fh</td>
<td>Dual Channel model only</td>
</tr>
</tbody>
</table>

Software/Hardware Installation under Windows

Install the driver from the supplied DVD. Turn off the computer. Insert the PCAN-PC/104 card in the PC/104 stack. After switching on the computer, enter the BIOS setup. In the PnP table mark the interrupts used by the PCAN-PC/104 card as reserved.

Getting Started under Windows

Run the CAN monitor PCAN-View from the Windows Start menu as a sample application for accessing the PCAN-PC/104 card. For initialization of the card, indicate the parameters (I/O base address, interrupt) and select the CAN connection and the CAN bit rate.

CAN connector (D-Sub, 9-pin)

![CAN connector diagram]

1. +5 V (optional)
2. CAN_L
3. GND
4. not connected
5. not connected
6. not connected
7. CAN_H
8. +5 V (optional)