Relevant Products

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAN-PCI/104-Express FD Single Channel</td>
<td>One CAN channel</td>
<td>IPEH-004080</td>
</tr>
<tr>
<td>PCAN-PCI/104-Express FD Dual Channel</td>
<td>Two CAN channels</td>
<td>IPEH-004081</td>
</tr>
<tr>
<td>PCAN-PCI/104-Express FD Quad Channel</td>
<td>Four CAN channels</td>
<td>IPEH-004082</td>
</tr>
</tbody>
</table>

The cover picture shows the product PCAN-PCI/104-Express FD Quad Channel opto-decoupled. Other product versions have an identical form factor but vary in equipment.

Imprint

PCAN is a registered trademark of PEAK-System Technik GmbH. CiA® is a registered community trademark of CAN in Automation e.V.

All other product names in this document may be the trademarks or registered trademarks of their respective companies. They are not explicitly marked by ™ or ®.

© 2023 PEAK-System Technik GmbH

Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH
Otto-Röhm-Straße 69
64293 Darmstadt
Germany

Phone: +49 6151 8173-20
Fax: +49 6151 8173-29

www.peak-system.com
info@peak-system.com

Document version 2.1.0 (2023-08-31)
Contents

Imprint .......................................................................................................................... 2
Relevant Products ........................................................................................................ 2
Contents ....................................................................................................................... 3

1 Introduction .............................................................................................................. 5
  1.1 Properties at a Glance ....................................................................................... 6
  1.2 System Requirements ....................................................................................... 6
  1.3 Scope of Supply .................................................................................................. 7

2 Configuration ............................................................................................................ 8
  2.1 Voltage Supply of External Devices ................................................................. 8
  2.2 Daisy Chain ........................................................................................................ 10
  2.3 Internal Termination .......................................................................................... 13

3 Installation ............................................................................................................... 15
  3.1 Install Device Driver Setup ............................................................................... 15
  3.2 Install CAN interface ......................................................................................... 15
  3.3 Check Operational Readiness ............................................................................ 16

4 Connecting the CAN Bus ......................................................................................... 17
  4.1 Connection over D-Sub Connector ..................................................................... 17
  4.2 Cabling ............................................................................................................... 18
  4.3 Example Application under Windows ............................................................... 19

5 CAN Monitor PCAN-View ...................................................................................... 20
  5.1 Initialize CAN interface ..................................................................................... 21
  5.2 Transmit CAN message ...................................................................................... 23
  5.3 Additional Tabs ................................................................................................... 24

6 API PCAN-Basic ...................................................................................................... 29
  6.1 Features of PCAN-Basic .................................................................................... 30
  6.2 Principle Description of the API ....................................................................... 31
7 Technical Data ............................................................................................................. 32
Appendix A CE Certificate .......................................................................................... 34
Appendix B UKCA Certificate ...................................................................................... 35
Appendix C Dimension Drawings ............................................................................... 36
Appendix D Quick Reference ....................................................................................... 37
Appendix E Linux ........................................................................................................ 38
Appendix F Disposal .................................................................................................. 39
1 Introduction

The PCAN-PCI/104-Express FD allows the connection of PCI/104-Express systems to CAN and CAN FD buses. The PCI/104-Express specification establishes PCI Express for the PC/104 form factor wherewith up to four cards can be stacked. Based on this, standardized modular embedded systems such as industrial PCs can be realized. The CAN bus is connected via 9-pin D-Sub connectors to the supplied slot brackets. There is a galvanic isolation between the computer and the CAN side up to 500 Volts. The card is available as a single, dual, or four-channel version.

The CAN FD standard (CAN with Flexible Data rate) is primarily characterized by higher bandwidth for data transfer. The maximum of 64 data bytes per CAN FD frame (instead of 8 so far) can be transmitted with bit rates up to 12 Mbit/s. CAN FD is downward-compatible to the CAN 2.0 A/B standard, thus CAN FD nodes can be used in existing CAN networks. However, in this case the CAN FD extensions are not applicable.

The monitor software PCAN-View and the programming interface PCAN-Basic for the development of applications with CAN connection are included in the scope of supply and support the standard CAN FD.

This manual describes the use of the CAN interface with Windows. Device drivers and application information for Linux: www.peak-system.com/quick/DL-Driver-E

At the end of this manual you can find a Quick Reference with brief information about the installation and operation of the CAN interface.
1.1 Properties at a Glance

- PCI/104-Express card, 1 lane (x1)
- Form factor PC/104
- Up to four cards can be used in one system
- 1, 2 or 4 High-speed CAN channels (ISO 11898-2)
- Complies with CAN specifications 2.0 A/B and FD
- CAN FD support for ISO and Non-ISO standards switchable
- CAN FD bit rates for the data field (64 bytes max.) from 20 kbit/s up to 12 Mbit/s
- CAN bit rates from 20 kbit/s up to 1 Mbit/s
- Connection to CAN bus through D-Sub slot brackets, 9-pin (in accordance with CiA® 106)
- FPGA implementation of the CAN FD controller
- Microchip CAN transceiver MCP2558FD
- Galvanic isolation on the CAN connection up to 500 V, separate for each CAN channel
- CAN termination can be activated through solder jumpers, separately for each CAN channel
- 5-Volt supply to the CAN connection can be connected through a solder jumper, e.g., for external bus converter
- PCIe data transfer via bus master DMA
- Measurement of bus load including error frames and overload frames on the physical bus
- Induced error generation for incoming and outgoing CAN messages
- Optional available: PC/104-ISA stack-through connector
- Extended operating temperature range from -40 to +85 °C (-40 to +185 °F)

1.2 System Requirements

PC/104 stack with

- PCIe/104 connectivity to the host
- Operating system Windows 11 (x64), 10 (x64), or Linux
1.3 Scope of Supply

- PCAN-PCI/104-Express FD card, 1 lane (x1)
- Slot bracket with D-Sub connector(s) for the CAN bus
  (two for the four-channel version)

Downloads

- Device drivers for Windows 11 (x64), 10 (x64), and Linux
- CAN monitor PCAN-View for Windows
- Programming interface PCAN-Basic for developing applications with CAN connection
- Programming interfaces for standardized protocols from the automotive sector
- Manual in PDF format
2 Configuration

Before installing the CAN interface into a PC/104 stack:

Check if you need the following configurations.

The solder fields described below are located on the bottom side of the CAN interface.

**Risk of short circuit!** Soldering on the CAN interface may only be performed by qualified electrical engineering personnel.

**Attention!** Electrostatic discharge (ESD) can damage or destroy components on the card. Take precautions to avoid ESD.

2.1 Voltage Supply of External Devices

**Attention!** The voltage supply for external devices is not protected separately. Therefore, turn off the computer before you connect and disconnect CAN cables or peripheral systems.

**Note:** The optional voltage supply for external devices can not be operated simultaneously with the daisy chain.

Optionally, an external voltage supply can be connected separately for each CAN channel via solder bridges at pin 1 on the D-Sub connector. This allows external devices to be supplied with a voltage of 5 V DC, for example bus converters (PCAN-TJA1054 for Low-Speed-CAN). Pin 1 is not connected at delivery.

The current output is limited to 50 mA.
2.1.1 Activate voltage supply

The following picture shows the solder field positions on the fourchannel card. The solder fields for the single and dual channel versions are located in the same positions.

Set the solder bridge(s) on the card according to the desired settings.
### 5-Volt supply via D-Sub plug

<table>
<thead>
<tr>
<th>D-Sub connector</th>
<th>Solder field</th>
<th>Without (Standard)</th>
<th>PIN 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN 1</td>
<td>JP1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 2</td>
<td>JP13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 3</td>
<td>JP16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 4</td>
<td>JP19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### 2.2 Daisy Chain

**Note:** The optional voltage supply for external devices can not be operated simultaneously with the daisy chain.

The daisy chain can be activated via solder jumpers on the board to connect a CAN-FD-optimized connection to an existing CAN bus. This makes interference-free operation possible at higher CAN FD bit rates, because stubs and Y distributions are avoided as far as possible.

#### 2.2.1 Connection example and assignment

For cabling, the cables and connectors must be assembled accordingly.
<table>
<thead>
<tr>
<th>D-Sub plug on PCAN interface</th>
<th>D-Sub socket on cable</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1  2  3  4  5</td>
<td>5  4  3  2  1</td>
<td>1</td>
</tr>
<tr>
<td>6  7  8  9</td>
<td>9  8  7  6</td>
<td>2</td>
</tr>
<tr>
<td>3, 6</td>
<td></td>
<td>3, 6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>4, 5, 9</td>
<td></td>
<td>4, 5, 9</td>
</tr>
</tbody>
</table>
2.2.2 Activate Daisy Chain

The following picture shows the solder field positions on the fourchannel card. The solder fields for the single and dual channel versions are located in the same positions.

Set the solder bridges corresponding to the desired settings.
### Daisy chain

<table>
<thead>
<tr>
<th>CAN connector</th>
<th>Solder fields</th>
<th>Without (Standard)</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN 1</td>
<td>JP10 und JP11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 2</td>
<td>JP12 und JP14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 3</td>
<td>JP15 und JP17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 4</td>
<td>JP18 und JP20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### 2.3 Internal Termination

The termination can be activated by solder jumpers on the circuit board, to terminate one end of the CAN bus.

**Tip:** We recommend to do termination at the CAN cabling, for example with the terminating resistors PCAN-Term (IPEK-003002) or PCAN-MiniTerm (IPEK-003002-Mini). Thus, CAN nodes can be flexibly connected to the bus.

#### 2.3.1 Activate Internal Termination

The following picture shows the solder field positions on the fourchannel card. The solder fields for the single and dual channel versions are located in the same positions.

Set the solder bridges corresponding to the desired settings.
### Internal termination

<table>
<thead>
<tr>
<th>CAN connector</th>
<th>Solder fields</th>
<th>Without (Standard)</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN 1</td>
<td>JP2 und JP3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 2</td>
<td>JP4 und JP5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 3</td>
<td>JP6 und JP7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN 4</td>
<td>JP8 und JP9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Installation

This chapter covers the software setup for the CAN interface PCAN-PCI/104-Express FD under Windows and the installation of the CAN interface into the PC/104 stack.

**Note:** For installation on Linux, see Appendix E *Linux.*

Install the driver before you install the CAN interface.

### 3.1 Install Device Driver Setup

1. Download the device driver setup from our website:
   www.peak-system.com/quick/DL-Driver-E
2. Unpack the file PEAK-System_Driver-Setup.zip
3. Double-click the file PeakOemDrv.exe
   The driver setup starts.
4. Follow the program instructions.

### 3.2 Install CAN interface

**Attention!** Electrostatic discharge (ESD) can damage or destroy components on the card. Take precautions to avoid ESD.
1. Connect one cable per CAN connection from the slot bracket to a 10-pin socket on the CAN interface.

2. Shut down the computer.
3. Disconnect the computer’s power supply.
4. Plug the CAN interface directly onto the host or onto another PCI/104 Express card of the PC/104 stack.
   A maximum of four PCI/104-Express cards can be installed in one system, either all on top or all beneath the host.
5. Install the slot bracket.
6. Reconnect the computer power supply.
7. Turn on the computer and start Windows.

Windows detects the new hardware and completes the driver installation.

3.3 Check Operational Readiness

1. Open the Windows Start menu.
2. Type Peak Settings and press Enter.
   The window PEAK Settings appears.
3. Select CAN Hardware.
   The connected CAN interface is displayed.
4 Connecting the CAN Bus

4.1 Connection over D-Sub Connector

After the slot bracket has been connected to the CAN interface a CAN bus can be connected to the D-Sub connector. The pin assignment of the D-Sub connector corresponds to the specification CiA® 106:

Position of the sockets on the four-channel card (IPEH-004082); dual channel card (IPEH-004081) only CAN 1 and CAN 2; single channel card (IPEH-004080) only CAN 1

<table>
<thead>
<tr>
<th>10-pin connector on CAN interface</th>
<th>D-Sub plug on slot bracket, 9-pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9, 7, 5, 3, 1</td>
<td>1, 2, 3, 4, 5</td>
<td></td>
</tr>
<tr>
<td>10, 8, 6, 4, 2</td>
<td>6, 7, 8, 9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+5 V (optional)</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>CAN_Low</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>CAN_High</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>6, 7, 8, 9, 10</td>
<td>4, 5, 8, 9</td>
<td>None</td>
</tr>
</tbody>
</table>
4.2 Cabling

4.2.1 Termination

The High-speed CAN bus (ISO 11898-2) must be terminated with 120 Ω on both ends. The termination prevents interfering signal reflections and ensures the proper operation of the transceivers of the connected CAN nodes (CAN interfaces, control devices).

The CAN interface PCAN-PCI/104-Express FD does not have an internal termination. Use the CAN interface on a terminated CAN bus.

4.2.2 Example of a Connection

This example shows a connection between the PCAN Interface and a control unit (ECU). The upper example shows a connection with a cable which is terminated with 120 Ω at both ends. At the lower example the connection is made with termination adapters.
4.2.3 Maximum Bus Length

The maximum bus length depends primarily on the bit rate:

<table>
<thead>
<tr>
<th>Nominal bit rate</th>
<th>Buslength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mbit/s</td>
<td>40 m</td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>110 m</td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>240 m</td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>500 m</td>
</tr>
<tr>
<td>50 kbit/s</td>
<td>1.3 km</td>
</tr>
<tr>
<td>25 kbit/s</td>
<td>2.5 km</td>
</tr>
<tr>
<td>20 kbit/s</td>
<td>3.3 km</td>
</tr>
</tbody>
</table>

The listed values have been calculated on the basis of an idealized system and can differ from reality.

4.3 Example Application under Windows

As an example application for accessing the CAN interface, run the CAN monitor PCAN-View from the Windows Start menu.
The CAN monitor PCAN-View is a Windows software for viewing, sending, and recording CAN and CAN FD messages. The software is installed with the installation of the device driver package under Windows.

In the following the initialization of a CAN interface is described as an example.

Detailed information about using PCAN-View can be found in the program window under the menu item Help.
5.1 Initialize CAN interface

1. Open the program *PCAN-View* via the Windows Start menu.
   Depending on the CAN interface the *Connect* dialog is displayed with or without settings for CAN FD.

<table>
<thead>
<tr>
<th>CAN interface</th>
<th>List entry in Available Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Interface, 1-channel</td>
<td>see example above</td>
</tr>
<tr>
<td>USB Interface, 2-channel</td>
<td><img src="image1" alt="PCAN-USB Pro FD: Device ID 251181Fh, Channel 1" /></td>
</tr>
<tr>
<td>PCIe Interface, 2-channel</td>
<td><img src="image2" alt="PCAN-PIC Express at PCI Bus 1, Device 0, Channel 1" /></td>
</tr>
<tr>
<td></td>
<td><img src="image3" alt="PCAN-PIC Express at PCI Bus 1, Device 0, Channel 2" /></td>
</tr>
</tbody>
</table>
2. If there are several CAN interfaces, select the desired interface. For multiple channels, select the desired channel from the list.

3. Enter the *bit rate(s)* and other settings according to the connected CAN bus.

4. Confirm the entries with *OK*. The main window appears and displays the *Receive / Transmit* tab.

5. For initializing another channel or CAN interface, open another instance of *PCAN-View*.
5.2 Transmit CAN message

1. Select the menu command Transmit / New Message.
   Depending on the CAN interface, the dialog box New Transmit Message is displayed with or without settings for CAN FD.

<table>
<thead>
<tr>
<th>CAN</th>
<th>CAN FD</th>
</tr>
</thead>
<tbody>
<tr>
<td>![New Transmit Message]</td>
<td>![New Transmit Message]</td>
</tr>
</tbody>
</table>

1. Enter the ID, Length and Data of the message. Other settings can be made according to the connected CAN bus.
2. Enter a value into the Cycle Time field to choose manually or periodically message transmission.
   - To transmit periodically enter a value greater than 0.
   - To transmit only manually enter the value 0.
3. Confirm the entries with OK.
   The created transmit message appears on the Receive / Transmit tab.
4. To send the message manually, select the menu command Transmit > Send or press the space bar.
   The manual transmission process is performed additionally for periodically transmitted CAN messages.
5.3 Additional Tabs

Depending on the CAN interface, additional tabs are available.

5.3.1 Trace Tab

The tracer (data logger) records the communication of the CAN bus in linear or ring buffer mode. The trace data can be saved to a file.
5.3.2 CAN Interface Tab

The CAN interface tab shows information about the hardware and the used Windows device driver. In this case exemplary for the PCAN-miniPCIe FD. Depending on the CAN interface, a hardware ID can be determined to distinguish several interfaces of the same type. For interfaces with CAN FD a transmission according to "ISO" or "Non-ISO" can be set as default of the hardware.
The *Bus Load* tab displays the current bus load, its time history and statistical information of the connected CAN channel.
5.3.4 Error Generator Tab

Via the Error Generator tab the communication on the CAN bus in test environments or during the development of CAN buses can be disturbed in a controlled way by 6 consecutive dominant bits. This is a violation of the CAN protocol on the CAN bus which must be recognized as an error by the connected CAN nodes.

Note: The Error Generator should only be used by experienced users and in the development environment. For further information, please contact our customer support: support@peak-system.com

You can destroy CAN frames with the error generator by one of two methods:
- once after activation
- repeatedly at specific intervals related to a CAN ID
Destroy Single CAN Frame

The Destroy Single Frame area refers to the next CAN frame that is recognized after activation.

1. Enter the Bit Position where in the CAN frame the error is to be generated. The bit position must start after the identifier. The count includes the stuff bits.
2. Execute the destroy action with Do it.
   The next received or transmitted CAN frame will be destroyed at the selected bit position.

Destroy Multiple CAN Frames

1. Enter the CAN ID of the CAN frame that is intended to be destroyed multiple times. The following specifications refer to this ID.
2. Enter the Bit Position where in the CAN frame the error is to be generated. The bit position must start after the identifier. The count includes the stuff bits.
3. If CAN messages are to be sent unharmed before being destroyed, specify the Number of Frames to ignore.
4. Determine the Number of Frames to destroy.
5. Confirm the entries with Apply to activate the error generator.
6. Stop destroying further CAN frames with Disable.
The intended use of PCAN-Basic requires compliance with the license rights. Read the license agreement for end users at:
https://www.peak-system.com/quick/eula

The programming interface (API) PCAN-Basic provides basic functions for the connection of own programs to the CAN and CAN FD Interfaces of PEAK-System. PCAN-Basic is the interface between the program and the device driver. In Windows operating systems this is a DLL (Dynamic Link Library) and in Linux operating systems an SO (Dynamic Shared Object). PCAN-Basic is designed to be cross-operating system compatible. Software projects can be ported between supported systems with little effort.

With the installation of the device driver package under Windows the DLL files of the API PCAN-Basic are placed in the system folder. Examples for all common programming languages as well as libraries and help files are available as a download package at: www.peak-system.com/quick/DL-Develop-E
For Linux, a download of the API is available under this link. For a use of PCAN-Basic another driver package with a chardev driver is needed, because an access under SocketCAN is not possible. The "Driver Package for Proprietary Purposes", the user manual, and further information about the implementation can be found at [www.peak-system.com/linux](http://www.peak-system.com/linux).

### 6.1 Features of PCAN-Basic

- API for developing applications with CAN and CAN FD connections
- Support for CAN specifications 2.0 A/B and FD
- Application development for the platforms Windows 11 (x64/ARM64), 10 (x64), and Linux
- Multiple PEAK-System applications and your own can be operated on a physical channel at the same time
- Use of a single DLL for all supported hardware types
- Use of up to 16 channels for each hardware type (depending on the PEAK CAN interface used)
- Simple switching between channels of a PEAK CAN interface
- Access to the CAN channels of a PCAN-Gateway via the new PCAN-LAN hardware type
- Driver-internal buffering of up to 32,768 CAN messages per CAN channel
- Precision of time stamps on received messages up to 1 µs (depending on the PEAK CAN interface used)
- Supports PEAK-System’s trace formats version 1.1 and 2.0 (for CAN FD applications)
- Access to specific hardware parameters, such as listen-only mode
- Notification of the application through Windows® events when a message is received
- Support of CAN error frames
- Confirmation of physical transmission by CAN echo frames
- Extended system for debugging operations
- Multilingual debugging output
- Output language depends on operating system
- Debugging information can be defined individually
- Thread-safe API
6.2 Principle Description of the API

The sequence of accessing the CAN interface is divided into three phases:

**Initialization**

A CAN channel must be initialized before using it. This is done by the simple call of the function `CAN_Initialize` for CAN and `CAN_InitializeFD` for CAN FD. Depending on the type of the CAN hardware, up to 16 CAN channels can be opened at the same time. After a successful initialization the CAN channel is ready. No further configuration steps are required.

**Interaction**

For receiving and transmitting messages the functions `CAN_Read` and `CAN_Write` as well as `CAN_ReadFD` and `CAN_WriteFD` are available depending on the initialization mode. Additional settings can be made, such as setting up message filters to confine to specific CAN IDs or setting the CAN controller to Listen-only mode.

When receiving CAN messages, events are used for an automatic notification of an application (client). This offers the following advantages:

- The application no longer needs to check for received messages periodically (no polling).
- The response time at reception is reduced.

**Completion**

To end the communication the function `CAN_Uninitialize` is called in order to release the reserved resources for the CAN channel, among others. In addition the CAN channel is marked as "Free" and is available to other applications.
## Technical Data

### Connections

<table>
<thead>
<tr>
<th>CAN slot bracket</th>
<th><strong>Connection side</strong></th>
<th><strong>Connection type</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAN bus</td>
<td>D-Sub (m), 9-pin, pin assignment according to CiA® 106</td>
</tr>
<tr>
<td></td>
<td>CAN interface</td>
<td>10-pin connector</td>
</tr>
<tr>
<td>PCIe/104</td>
<td>PCIe/104, PCI Express x1 (1 lane); Stack-through PCI/104 bus, optionally equipped with contact strip on request</td>
<td></td>
</tr>
</tbody>
</table>

### CAN

<table>
<thead>
<tr>
<th>Protocols</th>
<th>CAN and CAN FD according to ISO 11898-1; non-ISO CAN FD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical transmission</td>
<td>ISO 11898-2 (High-speed CAN)</td>
</tr>
<tr>
<td>Transceiver</td>
<td>MCP2558FD</td>
</tr>
<tr>
<td>CAN bit rates</td>
<td>Nominal: 20 kbit/s bis 1 Mbit/s</td>
</tr>
<tr>
<td>CAN FD bit rates</td>
<td>Nominal: 20 kbit/s bis 1 Mbit/s</td>
</tr>
<tr>
<td></td>
<td>Data: 20 kbit/s bis 12 Mbit/s</td>
</tr>
<tr>
<td>Controller</td>
<td>FPGA implementation</td>
</tr>
<tr>
<td>Time stamp resolution</td>
<td>1 µs</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>up to 500 V, separate for each CAN connector</td>
</tr>
<tr>
<td>Power supply external devices</td>
<td>D-Sub pin 1; 5 V, max. 50 mA; not assigned at delivery</td>
</tr>
<tr>
<td>Daisy chain</td>
<td>via solder bridges, disabled at delivery</td>
</tr>
<tr>
<td>Internal Termination</td>
<td>via solder bridges, disabled at delivery</td>
</tr>
</tbody>
</table>

### Power supply

| Supply voltage   | 5 V DC |
| Max. current consumption without power supply for external devices | Single Channel: 220 mA, Dual Channel: 230 mA, Quad Channel: 270 mA |

### Measures

<table>
<thead>
<tr>
<th>Size absolute (W x L)</th>
<th>90.2 x 95.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Single Channel</td>
<td>44 g</td>
</tr>
<tr>
<td>Dual Channel</td>
<td>50 g</td>
</tr>
<tr>
<td>Quad Channel</td>
<td>56 g</td>
</tr>
<tr>
<td>Slot bracket</td>
<td></td>
</tr>
<tr>
<td>Single Channel</td>
<td>25 g</td>
</tr>
<tr>
<td>Dual Channel</td>
<td>40 g</td>
</tr>
</tbody>
</table>
### Environment

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-40 to +85 °C (-40 to +185 °F)</td>
</tr>
<tr>
<td>Temperature for storage and transport</td>
<td>-40 to +125 °C (-40 to +257 °F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>15 to 90 %, not condensing</td>
</tr>
</tbody>
</table>

### Conformity

<table>
<thead>
<tr>
<th>Type</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoHS</td>
<td>EU Directive 2011/65/EU (RoHS 2) + 2015/863/EU</td>
</tr>
<tr>
<td></td>
<td>DIN EN IEC 63000:2019-05</td>
</tr>
<tr>
<td>EMC</td>
<td>EU Directive 2014/30/EU</td>
</tr>
<tr>
<td></td>
<td>DIN EN 55032:2022-08</td>
</tr>
<tr>
<td></td>
<td>DIN EN 55035:2018-04</td>
</tr>
</tbody>
</table>
EU Declaration of Conformity

This declaration applies to the following product:

**Product name:** PCAN-PCI/104-Express FD

**Item number(s):** IPEH-004080, IPEH-004081, IPEH-004082

**Manufacturer:** PEAK-System Technik GmbH
Otto-Röhrm-Straße 69
64293 Darmstadt
Germany

We declare under our sole responsibility that the mentioned product is in conformity with the following directives and the affiliated harmonized standards:

**EU Directive 2011/65/EU (RoHS 2) + 2015/863/EU (amended list of restricted substances)**

**DIN EN IEC 63000:2019-05**
Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances (IEC 63000:2016);
German version of EN IEC 63000:2018

**EU Directive 2014/30/EU (Electromagnetic Compatibility)**

**DIN EN 55032:2022-08**
Electromagnetic compatibility of multimedia equipment - Emission requirements (CISPR 32:2015);

**DIN EN 55035:2018-04**
Electromagnetic compatibility of multimedia equipment - Immunity requirements (CISPR 35:2016, modified);
German version of EN 55035:2017

Darmstadt, 30 August 2023

Uwe Wilhelm, Managing Director
UK Declaration of Conformity

This declaration applies to the following product:

Product name: **PCAN-PCI/104-Express FD**

Item number(s): IPEH-004080, IPEH-004081, IPEH-004082

**Manufacturer:**
PEAK-System Technik GmbH
Otto-Röhm-Straße 69
64293 Darmstadt
Germany

**UK authorized representative:**
Control Technologies UK Ltd
Unit 1, Stoke Mill,
Mill Road, Sharnbrook,
Bedfordshire, MK44 1NN, UK

We declare under our sole responsibility that the mentioned product is in conformity with the following UK legislations and the affiliated harmonized standards:

**The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012**
DIN EN IEC 63000:2019-05
Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances (IEC 63000:2016);
German version of EN IEC 63000:2018

**Electromagnetic Compatibility Regulations 2016**
DIN EN 55032:2022-08
Electromagnetic compatibility of multimedia equipment - Emission requirements (CISPR 32:2015);

DIN EN 55035:2018-04
Electromagnetic compatibility of multimedia equipment - Immunity requirements (CISPR 35:2016, modified);
German version of EN 55035:2017

Darmstadt, 30 August 2023

Uwe Wilhelm, Managing Director
Appendix C  Dimension Drawings

90,2 mm
8,9 mm
7,6 mm
95,9 mm
5,1 mm
5,1 mm
5,1 mm
5,1 mm
Appendix D  Quick Reference

Software/Hardware Installation under Windows

Download the device drivers installation package from our website www.peak-system.com/quick/DL-Driver-E. Install the driver before you install the CAN interface.

The new hardware is detected at the next Windows start and the driver is initialized. Check the operational readiness. Open the Windows Start menu. Type Peak Settings and press Enter. The window PEAK settings appears. The connected CAN interface is displayed under CAN Hardware.

Getting Started under Windows

Run the CAN monitor PCAN-View from the Windows Start menu as a sample application for accessing the CAN interface. For initialization of the CAN interface select the desired CAN channel and CAN bit rate.

Pin assignment

<table>
<thead>
<tr>
<th>10-pin connector on CAN interface</th>
<th>D-Sub plug on slot bracket, 9-pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 7 5 3 1</td>
<td>1 2 3 4 5</td>
<td></td>
</tr>
<tr>
<td>10 8 6 4 2</td>
<td>6 7 8 9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+5 V (optional)</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>CAN_Low</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>CAN_High</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>GND</td>
</tr>
<tr>
<td>6, 7, 8, 9, 10</td>
<td>4, 5, 8, 9</td>
<td>None</td>
</tr>
</tbody>
</table>
Appendix E  Linux

Depending on the Kernel version, device drivers for the CAN interfaces from PEAK-System are already included in the operating system. The PCAN interfaces are handled as network devices (SocketCAN, netdev). You can find the documentation for SocketCAN under:
https://www.kernel.org/doc/Documentation/networking/can.txt

The following command lists the available drivers:

```
grep PEAK_ /boot/config-`uname -r`
```

Whether the required driver for the PCAN interface is present and loaded can be checked with the following command:

```
lsmod | grep ^peak check
```

If the initialization was successful, the response line starts with `peak_pci`. You can find a recent list of which PCAN interface is supported from which kernel version onwards on our Linux website.

If the required drivers are not listed, install the "Driver Package for Proprietary Purposes". The download and documentation for the driver can also be found on: www.peak-system.com/linux

This driver package is also needed to use the APIs based on the chardev driver, for example PCAN-Basic, libpcan, or libpcanfd.
Appendix F  Disposal

The product must not be disposed of in household waste. Dispose of the product properly in accordance with local regulations.