Relevant products

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAN-cPCI Dual Channel opto-decoupled</td>
<td>2 CAN channels, galvanic isolation for CAN connections</td>
<td>IPEH-003021</td>
</tr>
<tr>
<td>PCAN-cPCI Quad Channel opto-decoupled</td>
<td>4 CAN channels, galvanic isolation for CAN connections</td>
<td>IPEH-003022</td>
</tr>
</tbody>
</table>

The cover picture shows the product PCAN-cPCI Quad Channel opto-decoupled. The product version Dual Channel opto-decoupled has an identical form factor but differs in equipment (no additional front blind with CAN connectors) and in the board's components.

PCAN® is a registered trademark of PEAK-System Technik GmbH. CANopen® and CiA® are registered community trade marks of CAN in Automation e.v.

All other product names mentioned in this manual may be the trademarks or registered trademarks of their respective companies. They are not explicitly marked by “™” and “®”.

Copyright © 2019 PEAK-System Technik GmbH
Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH
Otto-Roehm-Strasse 69
64293 Darmstadt
Germany

Phone: +49 (0)6151 8173-20
Fax: +49 (0)6151 8173-29

www.peak-system.com
info@peak-system.com

Document version 2.5.0 (2019-03-22)
Contents

1 Introduction
1.1 Properties at a Glance 5
1.2 System Requirements 6
1.3 Scope of Supply 7

2 Installing the Software and the Card 8

3 Connecting the CAN Bus 11
3.1 Connection over D-Sub connector 11
3.2 Voltage Supply of External Devices 12
3.3 Cabling
 3.3.1 Termination 14
 3.3.2 Example of a Connection 14
 3.3.3 Maximum Bus Length 15

4 Software and API 16
4.1 Monitor Software PCAN-View 16
 4.1.1 Receive/Transmit Tab 18
 4.1.2 Trace Tab 20
 4.1.3 PCAN-cPCI Tab 21
 4.1.4 Status Bar 21
4.2 Linking Own Programs with PCAN-Basic 22
 4.2.1 Features of PCAN-Basic 23
 4.2.2 Principle Description of the API 24
 4.2.3 Notes about the License 25

5 Technical Specifications 26

Appendix A CE Certificate 28
Appendix B Dimension Drawings 29
Appendix C Quick Reference 30
1 Introduction

The PCAN-cPCI card enables the connection of an industrial computer system with CompactPCI to CAN networks. There is galvanic isolation of up to 500 Volts between the computer and CAN sides. The card is available as a dual or four-channel version.

The monitor software PCAN-View and the programming interface PCAN-Basic for the development of applications with CAN connection are included in the scope of supply.

Device drivers exist for different operating systems, so programs can easily access a connected CAN bus.

Tip: At the end of this manual (Appendix C) you can find a Quick Reference with brief information about the installation and operation of the PCAN-cPCI card.

1.1 Properties at a Glance

- Extension card with euroboard form factor (3U) for a CompactPCI system
- 2 or 4 High-speed CAN channels (ISO 11898-2)
- Compliant with CAN specifications 2.0A (11-bit ID) and 2.0B (29-bit ID)
- Bit rates from 5 kbit/s up to 1 Mbit/s
- CAN bus connection via D-Sub, 9-pin (in accordance with CiA® 303-1)
- NXP SJA1000 CAN controller, 16 MHz clock frequency
- NXP PCA82C251 CAN transceiver
- 5-Volt supply to the CAN connection can be connected through a solder jumper, e.g. for external bus converter
- Galvanic isolation on the CAN connection up to 500 V, separate for each CAN channel
- Extended operating temperature range from -40 to 85 °C (-40 to 185 °F)

Note: This manual describes the use of the PCAN-cPCI card with **Windows**. You can find device drivers for **Linux** and the corresponding application information on the provided DVD in the directory branch `Develop` and on our website under www.peak-system.com/linux.

1.2 System Requirements

- One empty slot in the CompactPCI system, 3U form factor, CompactPCI connector J1
- With the Quad Channel version a place for an additional front blind with CAN connectors
- Operating system Windows 10, 8.1, 7 (32/64-bit) or Windows CE 6.x (x86 and ARMv4 processor support) or Linux (32/64-bit)
1.3 **Scope of Supply**

- PCAN-cPCI card
- Slot bracket with D-Sub connectors for the CAN bus (only four-channel version)
- Device drivers for Windows 10, 8.1, 7 and Linux (32/64-bit)
- Device driver for Windows CE 6.x (x86 and ARMv4 processor support)
- CAN monitor PCAN-View for Windows
- Programming interface PCAN-Basic for developing applications with CAN connection
- Programming interfaces for standardized protocols from the automotive sector
- Manual in PDF format
2 Installing the Software and the Card

This chapter covers the software setup for the PCAN-cPCI card under Windows and the installation of the card in the computer.

Install the driver before you install the card.

Do the following to install the driver:

1. Start Intro.exe from the supplied DVD.
 The navigation program starts.

2. Select in the main menu Drivers and click on Install now.

3. Confirm the message of the User Account Control related to "Installer database of PEAK Drivers".
 The driver setup starts.

4. Follow the program instructions.
Do the following to install card into the computer:

Attention! Electrostatic discharge (ESD) can damage or destroy components on the card. Take precautions to avoid ESD.

1. At the Quad Channel version of the PCAN-cPCI card (IPEH-003022) connect the cables of the additional front blind to the 10-pin ports J1 (CAN 3) and J2 (CAN 4).

![Figure 1: Positions of the ports J1 (CAN 3, lower marker) and J2 (CAN 4, upper marker)](image)

2. Shut down the computer.
3. Disconnect the computer from the power supply.
4. If applicable, remove the front blind of the CompactPCI slot to be used in the system. The additional front blind with connectors used by the Quad Channel version needs a further place.
5. Install the PCAN-cPCI card in the appropriate 3U slot (cPCI connection J1).
6. Place the additional connection blind beside the inserted PCAN-cPCI card, if applicable.

7. Reconnect the power supply of the computer.

8. Turn on the computer and start Windows.

Windows detects the new hardware and completes the driver installation.

Do the following to check the operational readiness:

1. Open the Windows Start menu.

2. Type `peakcpl` and press `Enter`.

The information window for PEAK hardware appears. The plug-in card must be displayed in the table on the CAN Hardware tab.
3 Connecting the CAN Bus

3.1 Connection over D-Sub connector

A High-speed CAN bus (ISO 11898-2) is connected to the 9-pin D-Sub connector. The pin assignment for CAN corresponds to the specification CiA® 303-1.

![Figure 2: Pin assignment High-speed CAN](view onto a male D-Sub connector on the PCAN-cPCI card)

Low power devices (e.g. bus converters) can be supplied directly with 5 volts over pin 1 and/or pin 9 of the CAN connector. Pin 1 and/or pin 9 are not in use at the delivery state. For more information see the next section 3.2.

Tip: Connect a CAN bus with a different transmission standard via a bus converter. PEAK-System offers different bus converter modules (e.g. PCAN-TJA1054 for a Low-speed CAN bus according to ISO 11898-3).
3.2 Voltage Supply of External Devices

External devices with low power consumption (e.g. bus converters) can be directly supplied via the CAN connector (independently for each connector). With a solder bridge per CAN channel on the PCAN-cPCI board, a 5-Volt supply can optionally be routed to pin 1 and/or pin 9 of the D-Sub connector.

The opto-decoupled cards contain an interconnected DC/DC converter. Therefore, the current output is limited to 50 mA.

Do the following to activate the voltage supply:

⚠️ **Risk of short circuit!** Solder with great care to avoid unwanted short circuits on the card.

⚠️ **Attention!** Electrostatic discharge (ESD) can damage or destroy components on the card. Take precautions to avoid ESD.

Set the solder bridge(s) on the card according to the desired settings.

Figure 3 shows the solder field positions on the card. The table below contains the possible settings.
Figure 3: Positions of the solder fields on the PCAN-cPCI card for a 5-Volt supply, JP1 to JP4 for CAN channels 1 to 4

<table>
<thead>
<tr>
<th>D-Sub connector</th>
<th>Solder field</th>
<th>5-Volt supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without (Standard)</td>
<td>Pin 1</td>
</tr>
<tr>
<td>CAN 1</td>
<td>JP1</td>
<td></td>
</tr>
<tr>
<td>CAN 2</td>
<td>JP2</td>
<td></td>
</tr>
<tr>
<td>CAN 3</td>
<td>JP3</td>
<td></td>
</tr>
<tr>
<td>CAN 4</td>
<td>JP4</td>
<td></td>
</tr>
</tbody>
</table>

⚠️ **Risk of short circuit!** The 5-Volt supply is not protected separately. Therefore, turn off the computer before you connect and disconnect CAN cables or peripheral systems.
3.3 Cabling

3.3.1 Termination
A High-speed CAN bus (ISO 11898-2) must be terminated with 120 ohms at both ends. The termination prevents interfering signal reflections and ensures the proper operation of the transceivers of the connected CAN nodes (CAN interfaces, control devices).

The PCAN-cPCI card does not have an internal termination. Use the card on a terminated CAN bus.

3.3.2 Example of a Connection

![Figure 4: Simple CAN connection](image)

This example shows a connection between the PCAN-cPCI card and a control unit. The connection cable is terminated with 120 ohms at both ends.
3.3.3 Maximum Bus Length

High-Speed-CAN networks may have bit rates of up to 1 Mbit/s. The maximum bus length depends primarily on the bit rate.

The following table shows the maximum possible CAN bus length at different bit rates:

<table>
<thead>
<tr>
<th>Bit rate</th>
<th>Bus length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mbit/s</td>
<td>40 m</td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>110 m</td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>240 m</td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>500 m</td>
</tr>
<tr>
<td>50 kbit/s</td>
<td>1.3 km</td>
</tr>
<tr>
<td>20 kbit/s</td>
<td>3.3 km</td>
</tr>
<tr>
<td>10 kbit/s</td>
<td>6.6 km</td>
</tr>
<tr>
<td>5 kbit/s</td>
<td>13.0 km</td>
</tr>
</tbody>
</table>

The listed values have been calculated on the basis of an idealized system and can differ from reality.
4 Software and API

This chapter covers the provided software PCAN-View and the programming interface PCAN-Basic.

4.1 Monitor Software PCAN-View

PCAN-View is simple Windows software for viewing, transmitting, and logging CAN- and CAN FD messages.

Note: This chapter describes the use of PCAN-View with a CAN adapter.
Do the following to start and initialize PCAN-View:

1. Open the Windows Start menu and select **PCAN-View**.
 The **Connect** dialog box appears.

![Connect dialog box](image)

Figure 6: Selection of the hardware and parameters

2. Select an interface from the list.

3. From the drop-down list, select the **Bit rate** that is used by all nodes on the CAN bus.

 Tip: You can create custom bit rates by using the button (▶).

4. Under **Filter settings** you can limit the range of CAN IDs to be received, either for standard frames (11-bit IDs) or for extended frames (29-bit IDs).

5. Activate the **Listen-only mode** if you do not actively participate in the CAN traffic and just want to observe. This also avoids unintended disruption of an unknown CAN environment (e.g. due to different bit rates).

6. Confirm the settings in the dialog box with **OK**. The main window of PCAN-View appears (see Figure 7).
4.1.1 Receive/Transmit Tab

The *Receive/Transmit* tab is the main element of PCAN-View. It contains two lists, one for received messages and one for the transmit messages. The CAN data format is hexadecimal by default.

Do the following to transmit a CAN message with PCAN-View:

1. Select the menu command *Transmit > New Message* (alternatively 📨 or **Ins**).

The *New Transmit Message* dialog box appears.

![Figure 7: Receive/Transmit Tab](image)

![Figure 8: Dialog box new transmit message](image)
2. Enter the ID, the data Length, and the CAN message Data.

Note: With the program version 4 of PCAN-View, the DLC field was renamed to Length. Latter reflects the actual data length.

3. Enter a value into the Cycle Time field to choose manually or periodically message transmission. Enter a value greater than 0 to transmit periodically. Enter the value 0 to transmit only manually.

4. Confirm the entries with OK.

The created transmit message appears on the Receive/Transmit tab.

5. You trigger selected transmit messages manually with the menu command Transmit > Send (alternatively Space bar). The manual transmission for CAN messages being transmitted periodically is carried out additionally.

Tip: Using the menu command File > Save the current transmit messages can be saved to a list and loaded for reuse later on.
4.1.2 Trace Tab

On the Trace tab, the data tracer (data logger) of PCAN-View is used for logging the communication on a CAN bus. During this process the messages are cached in the working memory of the PC. Afterwards they can be saved to a file.

The Tracer runs either in linear or in ring buffer mode. The linear buffer mode stops the Tracer as soon as the buffer is full. The ring buffer mode overwrites the oldest messages by new ones as soon as the buffer is full.
4.1.3 PCAN-cPCI Tab

The **PCAN-cPCI** tab contains some detailed information about the hardware and driver.

![PCAN-PCI Tab (example)](image)

4.1.4 Status Bar

The status bar shows information about the current CAN connection, about error counters (Overruns, QXmtFull) and shows error messages.

![Display of the Status Bar](image)

You can find further information about the use of PCAN-View in the help which you can invoke in the program via the **Help** menu or with the **F1** key.
4.2 Linking Own Programs with PCAN-Basic

On the provided DVD, you can find files of the PCAN-Basic programming interface in the directory branch Develop. This API provides basic functions for linking own programs to CAN and CAN FD interfaces by PEAK-System and can be used for the following operating systems:

- Windows 10, 8.1, 7 (32/64-bit)
- Windows CE 6.x (x86/ARMv4)
- Linux (32/64-bit)
The API is designed for cross-platform use. Therefore software projects can easily be ported between platforms with low efforts. For all common programming languages examples are available.

Beginning with version 4, PCAN-Basic supports the new CAN FD standard (CAN with Flexible Data Rate) which is primarily characterized by higher bandwidth for data transfer.

4.2.1 Features of PCAN-Basic

- API for developing applications with CAN and CAN FD connection
- Access to the CAN channels of a PCAN-Gateway via the new PCAN-LAN device type
- Supports the operating system Windows 10, 8.1, 7 (32/64-bit), Windows CE 6.x, and Linux (32/64-bit)
- Multiple PEAK-System applications and your own can be operated on a physical channel at the same time
- Use of a single DLL for all supported hardware types
- Use of up to 16 channels for each hardware unit (depending on the PEAK CAN interface used)
- Simple switching between channels of a PEAK CAN interface
- Driver-internal buffer for 32,768 messages per CAN channel
- Precision of time stamps on received messages up to 1 μs (depending on the PEAK CAN interface used)
- Supports PEAK-System’s trace formats version 1.1 and 2.0 (for CAN FD applications)
- Access to specific hardware parameters, such as listen-only mode
- Notification of the application through Windows events when a message is received
4.2.2 Principle Description of the API

The PCAN-Basic API is the interface between the user application and device driver. In Windows operating systems this is a DLL (Dynamic Link Library).

The sequence of accessing the CAN interface is divided into three phases:

1. Initialization
2. Interaction
3. Completion

Initialization

A channel must be initialized before using it. This is done by the simple call of the function CAN_Initialize for CAN and CAN_InitializeFD for CAN FD. Depending on the type of the CAN hardware, up to 16 CAN channels can be opened at the same time. After a successful initialization the CAN channel is ready. No further configuration steps are required.

Interaction

For receiving and transmitting messages the functions CAN_Read and CAN_Write as well as CAN_ReadFD and CAN_WriteFD are available.
Additional settings can be made, e.g. setting up message filters to confine to specific CAN IDs or setting the CAN controller to listen-only mode.

When receiving CAN messages, events are used for an automatic notification of an application (client). This offers the following advantages:

- The application no longer needs to check for received messages periodically (no polling).
- The response time at reception is reduced.

Completion

To end the communication the function `CAN_Uninitialize` is called in order to release the reserved resources for the CAN channel, among others. In addition the CAN channel is marked as "Free" and is available to other applications.

4.2.3 Notes about the License

Device drivers, the interface DLL, and further files needed for linking are property of the PEAK-System Technik GmbH and may be used only in connection with a hardware component purchased from PEAK-System or one of its partners. If a CAN hardware component of third-party suppliers should be compatible to one of PEAK-System, then you are not allowed to use or to pass on the driver software of PEAK-System.

If a third-party supplier develops software based on the PCAN-Basic and problems occur during the use of this software, consult the software provider.
5 Technical Specifications

Connectors

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer</td>
<td>CompactPCI connector J1 (110 Pin, 32 Bits)</td>
</tr>
<tr>
<td>CAN</td>
<td>D-Sub (m), 9 pins</td>
</tr>
<tr>
<td></td>
<td>Pin assignment according to specification CiA® 303-1</td>
</tr>
</tbody>
</table>

CAN

<table>
<thead>
<tr>
<th>Specification</th>
<th>ISO 11898-2, High-speed CAN 2.0A (standard format) and 2.0B (extended format)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit rates</td>
<td>5 kbit/s - 1 Mbit/s</td>
</tr>
<tr>
<td>Controller</td>
<td>NXP SJA1000</td>
</tr>
<tr>
<td>Transceiver</td>
<td>NXP PCA82C251</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>Up to 500 V, separate for each channel</td>
</tr>
<tr>
<td>Supplying external devices</td>
<td>D-Sub pin 1 / pin 9; 5 V, max. 50 mA</td>
</tr>
<tr>
<td>Internal Termination</td>
<td>none</td>
</tr>
</tbody>
</table>

Supply

Supply voltage	5 V
Current consumption	PCAN-cPCI Dual Channel: max. 490 mA
	PCAN-cPCI Quad Channel: max. 980 mA

Measures

Form factor	CompactPCI 3U plug-in card
Dimension Board	160 x 100 mm
Total	175 x 130 mm (without locking lever)
(See also dimension drawing in Appendix B on page 29)	
Weight	PCAN-cPCI Dual Ch.: 120 g
	PCAN-cPCI Quad Ch. + connection blind: 132 g + 56 g
Environment

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-40 - 85 °C (-40 – 185 °F)</td>
</tr>
<tr>
<td>Temperature for storage</td>
<td>-40 - 125 °C (-40 – 257 °F)</td>
</tr>
<tr>
<td>and transport</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>15 - 90 %, not condensing</td>
</tr>
</tbody>
</table>

Conformity

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EMV</td>
<td>Directive 2014/30/EU</td>
</tr>
<tr>
<td></td>
<td>DIN EN 55024:2016-05</td>
</tr>
<tr>
<td></td>
<td>DIN EN 55032:2016-02</td>
</tr>
<tr>
<td>RoHS 2</td>
<td>Directive 2011/65/EU</td>
</tr>
<tr>
<td></td>
<td>DIN EN 50581 VDE 0042-12:2013-02</td>
</tr>
</tbody>
</table>
Appendix A CE Certificate

EU Declaration of Conformity

This declaration applies to the following product:
Product name: PCAN-cPCI
Item number(s): IPEH-003021/22
Manufacturer: PEAK-System Technik GmbH
Otto-Roehm-Strasse 69
64293 Darmstadt
Germany

We declare under our sole responsibility that the mentioned product is in conformity with
the following directives and the affiliated harmonized standards:

EU Directive 2011/65/EU (RoHS 2)
DIN EN 50581 VDE 0042-12:2013-02
Technical documentation for the assessment of electrical and electronic products with respect to
the restriction of hazardous substances;
German version EN 50581:2012

EU Directive 2014/30/EU (Electromagnetic Compatibility)
DIN EN 55024:2016-05
Information technology equipment – Immunity characteristics – Limits and methods of
measurement (CISPR 24:2010 + Cor.:2011 + A1:2015);
German version EN 55024:2010 + A1:2015
DIN EN 55032:2016-02
Electromagnetic compatibility of multimedia equipment - Emission Requirements (CISPR 32:2015);
German version EN 55032:2015

Darmstadt, 22 February 2019

Uwe Wilhelm, Managing Director
Appendix B Dimension Drawings

Figure 13: Top view PCAN-cPCI card

Figure 14: View of the front blind

The figures don't show the actual size of the product.
Appendix C Quick Reference

Software/Hardware Installation under Windows

Install the driver from the supplied DVD, before you insert the plug-in card into the computer.

The new hardware is detected at the next Windows start and the driver is initialized. Check the operational readiness. Open the Windows Start menu. Type `peakcpl` and press Enter. An information window for PEAK Hardware opens. The plug-in card must be displayed in the table on the CAN Hardware tab.

Getting Started under Windows

Run the CAN monitor PCAN-View from the Windows Start menu as a sample application for accessing the PCAN-cPCI card. For initialization of the PCAN-cPCI card select the desired CAN channel and the CAN bit rate.

High-speed CAN connector (D-Sub, 9 pins)

![High-speed CAN connector diagram]