Relevant products

<table>
<thead>
<tr>
<th>Product name</th>
<th>Model</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAN-miniPCI Single Channel</td>
<td>One CAN channel</td>
<td>IPEH-003044</td>
</tr>
<tr>
<td>PCAN-miniPCI Dual Channel</td>
<td>Two CAN channels</td>
<td>IPEH-003045</td>
</tr>
<tr>
<td>PCAN-miniPCI Single Channel</td>
<td>One CAN channel, galvanic isolation for CAN connection</td>
<td>IPEH-003046</td>
</tr>
<tr>
<td>opto-decoupled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCAN-miniPCI Dual Channel</td>
<td>Two CAN channels, galvanic isolation for CAN connections</td>
<td>IPEH-003047</td>
</tr>
<tr>
<td>opto-decoupled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The cover picture shows the product PCAN-miniPCI Dual Channel with opto-decoupling. Other product models have an identical form factor but vary in equipment.

PCAN® is a registered trademark of PEAK-System Technik GmbH. CANopen® and CiA® are registered community trade marks of CAN in Automation e.V.

All other product names mentioned in this document may be the trademarks or registered trademarks of their respective companies. They are not explicitly marked by “™” or “®”.

Copyright © 2019 PEAK-System Technik GmbH
Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH
Otto-Roehm-Strasse 69
64293 Darmstadt
Germany

Phone: +49 (0)6151 8173-20
Fax: +49 (0)6151 8173-29

www.peak-system.com
info@peak-system.com

Document version 2.6.0 (2019-03-19)
Contents

1 Introduction 5
 1.1 Properties at a Glance 5
 1.2 System Requirements 6
 1.3 Scope of Supply 6

2 Installing the Software and the Card 8

3 Connecting the CAN Bus 10
 3.1 Connection over D-Sub Connector 10
 3.2 Voltage Supply of External Devices 13
 3.3 Cabling 15
 3.3.1 Termination 15
 3.3.2 Example of a Connection 15
 3.3.3 Maximum Bus Length 16

4 Software and API 17
 4.1 Monitor Software PCAN-View 17
 4.1.1 Receive/Transmit Tab 19
 4.1.2 Trace Tab 21
 4.1.3 PCAN-miniPCI Tab 22
 4.1.4 Status Bar 22
 4.2 Linking Own Programs with PCAN-Basic 23
 4.2.1 Features of PCAN-Basic 24
 4.2.2 Principle Description of the API 25
 4.2.3 Notes about the License 26

5 Technical Specifications 27

Appendix A CE Certificate 29

Appendix B Dimension Drawing 30
Appendix C Quick Reference
1 Introduction

The PCAN-miniPCI card enables the connection of embedded PCs and laptops with Mini PCI slots to CAN networks. The card is available as a single or dual-channel version. The opto-decoupled versions also guarantee galvanic isolation of up to 300 Volts between the PC and the CAN sides.

The package is also supplied with the CAN monitor PCAN-View for Windows and the programming interface PCAN-Basic.

Device drivers exist for different operating systems, so programs can easily access a connected CAN bus.

Tip: At the end of this manual (Appendix C) you can find a Quick Reference with brief information about the installation and operation of the PCAN-miniPCI card.

1.1 Properties at a Glance

- CAN interface for the Mini PCI slot
- 1 or 2 High-speed CAN channels (ISO 11898-2)
- CAN bus connection via connection cable and D-Sub, 9-pin (in accordance with CiA® 303-1)
- Bit rates from 40 kbit/s up to 1 Mbit/s
- Compliant with CAN specifications 2.0A (11-bit ID) and 2.0B (29-bit ID)
- NXP SJA1000 CAN controller, 16 MHz clock frequency
- NXP TJA1040 CAN transceiver
- 5-Volt supply to the CAN connection can be connected through a solder jumper, e.g. for external bus converter
Galvanic isolation on the CAN connection up to 300 V (only opto-decoupled versions), separate for each CAN channel

Operating temperature range from 0 to 70 °C (32 to 158 °F)

Note: This manual describes the use of the PCAN-miniPCI card with **Windows**. You can find device drivers for **Linux** and the corresponding application information on the provided DVD in the **Develop** directory branch and on our website under www.peak-system.com/linux.

1.2 System Requirements

- A vacant Mini PCI slot in the computer
- Operating system Windows 10, 8.1, 7 (32/64-bit), or Windows CE 6.x (x86 and ARMv4 processor support), or Linux (32/64-bit)

1.3 Scope of Supply

- PCAN-miniPCI card
- Connection cable including D-Sub plug for each channel
- Device drivers for Windows 10, 8.1, 7 (32/64-bit) and Linux (32/64-bit)
- Device driver for Windows CE 6.x (x86 and ARMv4 processor support)
- CAN monitor PCAN-View for Windows
- Programming interface PCAN-Basic for developing applications with CAN connection
Programming interfaces for standardized protocols from the automotive sector
Manual in PDF format
2 Installing the Software and the Card

This chapter covers the software setup for the PCAN-miniPCI card in Windows and the installation of the card in the computer.

Install the driver before you install the card.

Do the following to install the driver:

1. Start \textit{Intro.exe} from the supplied DVD.
 The navigation program starts.
2. In the main menu, select \textbf{Drivers} and click on \textit{Install now}.
3. Confirm the message of the User Account Control related to "Installer database of PEAK Drivers".
 The driver setup starts.
4. Follow the program instructions.

Do the following to install the card:

\textbf{Attention!} Electrostatic discharge (ESD) can damage or destroy components on the card. Take precautions to avoid ESD.

1. Shut down the computer.
2. Disconnect the computer’s power supply.
3. Open the computer case.
4. Insert the PCAN-miniPCI card into an empty Mini PCI slot.
5. For each CAN channel, mount a D-Sub connector with connection circuit board into a respective hole of the computer casing.
6. For each CAN channel interconnect a D-Sub connector and the corresponding port on the PCAN-miniPCI card.

7. Close the computer case.

8. Reconnect the computer’s power supply.

9. Turn on the computer and start Windows.

Windows detects the new hardware and completes the driver installation.

Do the following to check the operational readiness:

1. Open the Windows Start menu.

2. Type `peakcpl` and press Enter.

The information window for PEAK hardware appears. The plug-in card must be displayed in the table on the CAN Hardware tab.
3 Connecting the CAN Bus

3.1 Connection over D-Sub Connector

A High-speed CAN bus (ISO 11898-2) is connected to the 9-pin D-Sub connector. The pin assignment for CAN corresponds to the specification CiA® 303-1.

![Diagram of CAN ports and pin assignment](image)

Figure 1: Positions of the CAN ports on the PCAN-miniPCI card

![Diagram of pin assignment](image)

Figure 2: Pin assignment High-speed CAN (view onto a D-Sub connector)
Low power devices (e.g. bus converters) can be supplied directly with 5 volts over pin 1 of the CAN connector. Pin 1 is not in use at the delivery state. For more information see the next section 3.2.

Tip: Connect a CAN bus with a different transmission standard via a bus converter. PEAK-System offers different bus converter modules like the PCAN-TJA1054 for a Low-speed CAN bus according to ISO 11898-3.

To connect a CAN bus to the PCAN-miniPCI card, use the supplied special connection cables. After you’ve plugged in the cable on the card, you can connect a CAN bus to the D-sub socket.
The pin assignment between the D-Sub port and the 4-pin connector\(^1\) on the PCAN-miniPCI card is as follows:

![Figure 4: Front view of a CAN connector (SUR) on the PCAN-miniPCI card (J2, J3)](image)

<table>
<thead>
<tr>
<th>Pin SUR</th>
<th>Function</th>
<th>Pin D-Sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 V (optional)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>3, 6</td>
</tr>
<tr>
<td>3</td>
<td>CAN_H</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>CAN_L</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^1\) Connector type SUR from JST (www.jst-mfg.com), name of the matching plug: 04SUR-32S
3.2 Voltage Supply of External Devices

External devices with low power consumption (e.g. bus converters) can be directly supplied via the CAN connector. With a solder bridge per CAN channel on the PCAN-miniPCI board, a 5-Volt supply can optionally be routed to pin 1 of the D-Sub connector (independently for each connector on the Dual Channel models). The current consumption may not exceed 50 mA per CAN connector.

The opto-decoupled models of the card contain an interconnected DC/DC converter. In each case resettable 100-mA fuses are interposed.

Important note: The specification for Mini PCI slots provides a maximum current output of 100 mA on the 5-Volt bar. By the additional current consumption of external devices this limit can be exceeded and as a result the correct function of the computer may be affected.

Do the following to activate the voltage supply:

Risk of short circuit! Solder with great care to avoid unwanted short circuits on the card.

Attention! Electrostatic discharge (ESD) can damage or destroy components on the card. Take precautions to avoid ESD.

Set the solder bridges corresponding to the desired settings.

Figure 5 shows the positions of the solder fields on the card. The table below contains the possible settings.
Figure 5: Positions of the solder fields on the PCAN-miniPCI card

<table>
<thead>
<tr>
<th>D-Sub connector</th>
<th>Solder field</th>
<th>5-Volt supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without (standard)</td>
</tr>
<tr>
<td>CAN1</td>
<td>near J2</td>
<td>□</td>
</tr>
<tr>
<td>CAN2</td>
<td>near J3</td>
<td>□</td>
</tr>
</tbody>
</table>

Risk of short circuit! The 5-Volt supply is not protected separately. Therefore, turn off the computer before you connect and disconnect CAN cables or peripheral systems.
3.3 Cabling

3.3.1 Termination
A High-speed CAN bus (ISO 11898-2) must be terminated with 120 ohms at both ends. The termination prevents interfering signal reflections and ensures the proper operation of the transceivers of the connected CAN nodes (CAN interfaces, control devices).

The PCAN-miniPCI card does not have an internal termination. Use the adapter on a terminated CAN bus.

3.3.2 Example of a Connection

This example shows a connection between the PCAN-miniPCI card and a control unit. The connection cable is terminated with 120 ohms at both ends.

![Example of a Connection Diagram](image-url)
3.3.3 Maximum Bus Length

High-speed CAN networks have bit rates up to 1 Mbit/s. The maximum bus length primarily depends on the bit rate.

The following table shows different maximum possible CAN bus length with different bit rates:

<table>
<thead>
<tr>
<th>Bit rate</th>
<th>Bus length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mbit/s</td>
<td>40 m</td>
</tr>
<tr>
<td>500 kbit/s</td>
<td>110 m</td>
</tr>
<tr>
<td>250 kbit/s</td>
<td>240 m</td>
</tr>
<tr>
<td>125 kbit/s</td>
<td>500 m</td>
</tr>
<tr>
<td>50 kbit/s</td>
<td>1.3 km</td>
</tr>
</tbody>
</table>

The listed values have been calculated on the basis of an idealized system and can differ from reality.
4 Software and API

This chapter covers the provided software PCAN-View and the programming interface PCAN-Basic.

4.1 Monitor Software PCAN-View

PCAN-View is simple Windows software for viewing, transmitting, and logging CAN- and CAN FD messages.

Note: This chapter describes the use of PCAN-View with a CAN adapter.

Figure 7: PCAN-View for Windows
Do the following to start and initialize PCAN-View:

1. Open the Windows Start menu and select **PCAN-View**.
 The **Connect** dialog box appears.

2. Select an interface from the list.

3. From the drop-down list, select the **Bit rate** that is used by all nodes on the CAN bus.

 Tip: Create custom bit rates by using the arrow button (▶).

4. Under **Filter settings** you can limit the range of CAN IDs to be received, either for standard frames (11-bit IDs) or for extended frames (29-bit IDs).

5. Activate the **Listen-only mode** if you do not actively participate in the CAN traffic and just want to observe. This also avoids an unintended disruption of an unknown CAN environment (e.g. due to different bit rates).

6. Confirm the settings in the dialog box with **OK**. The main window of PCAN-View appears (see Figure 9).
4.1.1 Receive/Transmit Tab

The Receive/Transmit tab is the main element of PCAN-View. It contains two lists, one for received messages and one for the transmit messages. The CAN data format is hexadecimal by default.

Do the following to transmit a CAN message with PCAN-View:

1. Select the menu command Transmit > New Message (alternatively or Ins).

The New Transmit Message dialog box appears.
2. Enter the ID, the data Length, and the CAN message Data.

Note: With the program version 4 of PCAN-View, the DLC field was renamed to Length. Latter reflects the actual data length.

3. Enter a value into the Cycle Time field to choose manually or periodically message transmission. Enter a value greater than 0 to transmit periodically. Enter the value 0 to transmit only manually.

4. Confirm the entries with OK.

The created transmit message appears on the Receive/Transmit tab.

5. Trigger selected transmit messages manually with the menu command Transmit > Send (alternatively Space bar). The manual transmission for CAN messages being transmitted periodically is carried out additionally.

Tip: Under the menu command File > Save, you can save the current transmit messages into a transmit list. Saved transmit lists are available for reuse.
4.1.2 Trace Tab

On the Trace tab, the data tracer (data logger) of PCAN-View is used for logging the communication on a CAN bus. During this process the messages are cached in the working memory of the PC. Afterwards they can be saved to a file.

The Tracer runs either in linear or in ring buffer mode. The linear buffer mode stops the Tracer as soon as the buffer is full. The ring buffer mode overwrites the oldest messages by new ones as soon as the buffer is full.
4.1.3 PCAN-miniPCI Tab

The **PCAN-miniPCI** tab contains some detailed information about the hardware and driver.

![PCAN-PCI tab](image)

Figure 12: PCAN-PCI tab (example)

4.1.4 Status Bar

The status bar shows information about the current CAN connection, about error counters (Overruns, QXmtFull) and shows error messages.

![Status bar example](image)

Figure 13: Example of the status bar

You can find further information about the use of PCAN-View in the help which you can invoke in the program via the **Help** menu or with the **F1** key.
4.2 Linking Own Programs with PCAN-Basic

On the provided DVD, you can find files of the PCAN-Basic programming interface in the directory branch Develop. This API provides basic functions for linking own programs to CAN and CAN FD interfaces by PEAK-System and can be used for the following operating systems:

- Windows 10, 8.1, 7 (32/64-bit)
- Windows CE 6.x (x86/ARMv4)
- Linux (32/64-bit)

The API is designed for cross-platform use. Therefore, software projects can easily be ported between platforms with low efforts. For all common programming languages, examples are available.
Beginning with version 4, PCAN-Basic supports the new CAN FD standard (CAN with Flexible Data Rate) which is primarily characterized by higher bandwidth for data transfer.

4.2.1 Features of PCAN-Basic

- API for developing applications with CAN and CAN FD connection
- Access to the CAN channels of a PCAN-Gateway via the new PCAN-LAN device type
- Supports the operating systems Windows 10, 8.1, 7 (32/64-bit), Windows CE 6.x, and Linux (32/64-bit)
- Multiple PEAK-System applications and your own can be operated on a physical channel at the same time
- Use of a single DLL for all supported hardware types
- Use of up to 16 channels for each hardware unit (depending on the PEAK CAN interface used)
- Simple switching between channels of a PEAK CAN interface
- Driver-internal buffering of 32,768 messages per CAN channel
- Precision of time stamps on received messages up to 1 μs (depending on the PEAK CAN interface used)
- Supports PEAK-System’s trace formats version 1.1 and 2.0 (for CAN FD applications)
- Access to specific hardware parameters, such as listen-only mode
- Notification of the application through Windows events when a message is received
- Extended system for debugging operations
- Multilingual debugging output
Output language depends on operating system
- Debugging information can be defined individually
- Thread-safe API

Tip: An overview of the API functions is located in the header files. You can find detailed information about the PCAN-Basic API on the provided DVD in the text and help files (file name extensions .txt and .chm).

4.2.2 Principle Description of the API

The PCAN-Basic API is the interface between the user application and device driver. In Windows operating systems this is a DLL (Dynamic Link Library).

The sequence of accessing the CAN interface is divided into three phases:

1. Initialization
2. Interaction
3. Completion

Initialization

A channel must be initialized before using it. This is done by the simple call of the function \texttt{CAN_Initialize} for CAN and \texttt{CAN_InitializeFD} for CAN FD. After a successful initialization the CAN channel is ready. No further configuration steps are required.

Interaction

For receiving and transmitting messages the functions \texttt{CAN_Read} and \texttt{CAN_Write} as well as \texttt{CAN_ReadFD} and \texttt{CAN_WriteFD} are available. Additional settings can be made, e.g. setting up message filters to confine to specific CAN IDs or setting the CAN controller to listen-only mode.
When receiving CAN messages, events are used for an automatic notification of an application (client). This offers the following advantages:

- The application no longer needs to check for received messages periodically (no polling).
- The response time at reception is reduced.

Completion

To end the communication the function `CAN_Uninitialize` is called in order to release the reserved resources for the CAN channel, among others. In addition the CAN channel is marked as "Free" and is available to other applications.

4.2.3 Notes about the License

Device drivers, the interface DLL, and further files needed for linking are property of the PEAK-System Technik GmbH and may be used only in connection with a hardware component purchased from PEAK-System or one of its partners. If a CAN hardware component of third-party suppliers should be compatible to one of PEAK-System, then you are not allowed to use or to pass on the driver software of PEAK-System.

If a third-party supplier develops software based on the PCAN-Basic and problems occur during the use of this software, consult the software provider.
Technical Specifications

Connectors

<table>
<thead>
<tr>
<th>Computer</th>
<th>Mini PCI, type 3A (124-pin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN (via cable)</td>
<td>D-Sub (m), 9-pin, assignment according to specification CiA® 303-1</td>
</tr>
<tr>
<td>CAN (on card)</td>
<td>Connector type SUR from JST (www.jst-mfg.com), name of the matching plug: 04SUR-32S</td>
</tr>
</tbody>
</table>

CAN

Specification	ISO 11898-2, High-speed CAN 2.0A (Standard format) and 2.0B (Extended format)
Bit rates	40 kbit/s - 1 Mbit/s Lower bit rates on request
Controller	NXP SJA1000
Transceiver	NXP TJA1040
Galvanic isolation	PCAN-miniPCI: none PCAN-miniPCI opto: up to 300 V, separate for each CAN channel
Supplying external devices	D-Sub pin 1; 5 V, max. 50 mA, not assigned at delivery
Internal termination	none

Power supply

| Current consumption at 3.3-Volt pin | max. 20 mA |
| Current consumption at 5-Volt pin | \(\begin{array}{ll}
PCAN-miniPCI Single Ch.: & 30 \text{ mA} \quad 50 \text{ mA} \\
PCAN-miniPCI Dual Ch.: & 40 \text{ mA} \quad 80 \text{ mA} \\
PCAN-miniPCI Single Ch. opto: & 40 \text{ mA} \quad 60 \text{ mA} \\
PCAN-miniPCI Dual Ch. opto: & 60 \text{ mA} \quad 100 \text{ mA}
\end{array} \) |
Measures

<table>
<thead>
<tr>
<th>Measures</th>
<th>Size</th>
<th>59.6 x 51 x 4 mm (W x L x H)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>See also dimension drawing in Appendix B on page 30.</td>
</tr>
<tr>
<td>Weight</td>
<td>Card</td>
<td>10 g</td>
</tr>
<tr>
<td></td>
<td>Cable + D-Sub</td>
<td>8 g</td>
</tr>
<tr>
<td>PCAN-miniPCI Single Ch.</td>
<td>10 g</td>
<td>8 g</td>
</tr>
<tr>
<td>PCAN-miniPCI Dual Ch.</td>
<td>11 g</td>
<td>16 g</td>
</tr>
<tr>
<td>PCAN-miniPCI Single Ch. opto</td>
<td>11 g</td>
<td>8 g</td>
</tr>
<tr>
<td>PCAN-miniPCI Dual Ch. opto</td>
<td>12 g</td>
<td>16 g</td>
</tr>
<tr>
<td>Length connection cable (card - D-Sub)</td>
<td>15 cm, other cable lengths on request</td>
<td></td>
</tr>
</tbody>
</table>

Environment

<table>
<thead>
<tr>
<th>Environment</th>
<th>Operating temperature</th>
<th>0 - +70 °C (32 - 158 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature for storage and transport</td>
<td>-40 - +100 °C (-40 - +212 °F)</td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>15 - 90 %, not condensing</td>
<td></td>
</tr>
</tbody>
</table>

Conformity

Conformity	EMV	Directive 2014/30/EU
		DIN EN 55024:2016-05
		DIN EN 55032:2016-02
	RoHS 2	Directive 2011/65/EU
		DIN EN 50581 VDE 0042-12:2013-02
Appendix A CE Certificate

EU Declaration of Conformity

This declaration applies to the following product:
Product name: PCAN-miniPCI
Item number(s): IPEH-003044/45/46/47
Manufacturer: PEAK-System Technik GmbH
Otto-Roehm-Strasse 69
64293 Darmstadt
Germany

We declare under our sole responsibility that the mentioned product is in conformity with the following directives and the affiliated harmonized standards:

EU Directive 2011/65/EU (RoHS 2)
DIN EN 50581 VDE 0042-12:2013-02
Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances;
German version EN 50581:2012

EU Directive 2014/30/EU (Electromagnetic Compatibility)
DIN EN 55024:2016-05
Information technology equipment – Immunity characteristics – Limits and methods of measurement (CISPR 24:2010 + Cor.:2011 + A1:2015);
German version EN 55024:2010 + A1:2015
DIN EN 55032:2016-02
Electromagnetic compatibility of multimedia equipment - Emission Requirements (CISPR 32:2015);
German version EN 55032:2015

Darmstadt, 22 February 2019

[Signature]

Uwe Wilhelm, Managing Director
Appendix B Dimension Drawing

Figure 15: View PCAN-miniPCI; the figure does not show the actual size of the product.
Appendix C Quick Reference

Software/Hardware Installation under Windows

Install the driver from the supplied DVD, before you insert the plug-in card. Turn off the computer and insert the PCAN-miniPCI into a vacant Mini PCI slot.

The new hardware is detected at the next Windows start and the driver is initialized. Check the operational readiness. Open the Windows Start menu. Type `peakcpl` and press `Enter`. An information window for PEAK Hardware opens. The plug-in card must be displayed in the table on the CAN Hardware tab.

Getting Started under Windows

Run the CAN monitor PCAN-View from the Windows Start menu as a sample application for accessing the card. For initialization of the PCI card select the desired CAN channel and CAN bit rate.

High-speed CAN connector (D-Sub, 9 pins)